Estimation and Inference of Optimal Policies

Zhaoqi Li

Motivation

Motivation

Motivation

Motivation

Motivation

Question: What is the best way to give personalized recommendations to maximize revenue?

Motivation

C
a
policy
π

Upcoming Sale

Question: What is the best way to give personalized recommendations to maximize revenue?

Motivation

Motivation

Motivation

policy

Motivation

Motivation

Motivation

Question: how do we characterize the amount of side effects when the treatment allocation is
optimized for disease remission?

Outline

- Project 1: Instance-optimal PAC Contextual bandits
- Project 2: Estimation of the mean of subsidiary outcome
- Future Work

Instance-Optimal PAC Algorithms for Contextual Bandits

Zhaoqi Li*, Lillian Ratliff*, Houssam Nassif ${ }^{\dagger}$, Kevin Jamieson*, Lalit Jain*
*University of Washington

\dagger Amazon

Contextual Bandit Setting

- At each time $t=1,2, \cdots$:
- Context $c_{t} \in \mathrm{C}$ arrives, $c_{t} \sim \nu \in \Delta_{\mathrm{C}}$
- Choose action $a_{t} \in \mathrm{~A}$
- Receive reward $r_{t}, \mathbb{E}\left[r_{t} \mid c_{t}, a_{t}\right]=r\left(c_{t}, a_{t}\right) \in \mathbb{R}$

Contextual Bandit Setting

- At each time $t=1,2, \cdots$:
- Context $c_{t} \in \mathrm{C}$ arrives, $c_{t} \sim \nu \in \Delta_{\mathrm{C}}$
- Choose action $a_{t} \in \mathrm{~A}$
- Receive reward $r_{t}, \mathbb{E}\left[r_{t} \mid c_{t}, a_{t}\right]=r\left(c_{t}, a_{t}\right) \in \mathbb{R}$
- Policy class Π, each $\pi \in \Pi, \pi: \mathrm{C} \rightarrow \mathrm{A}$
- Value function: $V(\pi):=\mathbb{E}_{c \sim \nu}[r(c, \pi(c))]$
- Optimal policy: $\pi_{*}:=\arg \max V(\pi)$

$$
\pi \in \Pi
$$

Contextual Bandit Setting

- At each time $t=1,2, \cdots$:
- Context $c_{t} \in \mathrm{C}$ arrives, $c_{t} \sim \nu \in \Delta_{\mathrm{C}}$
- Choose action $a_{t} \in \mathrm{~A}$
- Receive reward $r_{t}, \mathbb{E}\left[r_{t} \mid c_{t}, a_{t}\right]=r\left(c_{t}, a_{t}\right) \in \mathbb{R}$
- Policy class Π, each $\pi \in \Pi, \pi: \mathrm{C} \rightarrow \mathrm{A}$
- Value function: $V(\pi):=\mathbb{E}_{c \sim L}[r(c, \pi(c))]$
- Optimal policy: $\pi_{*}:=\arg \max V(\pi)$

$$
\pi \in \Pi
$$

(ϵ, δ) - PAC Guarantee

Return $\hat{\pi}$ satisfying, $V(\hat{\pi}) \geq V\left(\pi_{*}\right)-\epsilon$ with probability greater than $1-\delta$ in a minimum number of samples.

Regret Minimization vs. Policy Identification

Regret Minimization vs. Policy Identification

- Regret heavily studied:

$$
R_{T}=\sum_{t=1}^{T}\left[r\left(c_{t}, \pi_{*}\left(c_{t}\right)\right)-r\left(c_{t}, a_{t}\right)\right]
$$

Regret Minimization vs. Policy Identification

- Regret heavily studied:

$$
R_{T}=\sum_{t=1}^{T}\left[r\left(c_{t}, \pi_{*}\left(c_{t}\right)\right)-r\left(c_{t}, a_{t}\right)\right]
$$

- EXP4 achieves a minimax-optimal regret bound of $\left.R_{T}=O(\sqrt{|\mathrm{~A}| T \log (|\Pi|})\right)$, also achieved by ILOVETOCONBANDITS [Agarwal et al. 2014] and computationally efficient

Regret Minimization vs. Policy Identification

- Regret heavily studied:

$$
R_{T}=\sum_{t=1}^{T}\left[r\left(c_{t}, \pi_{*}\left(c_{t}\right)\right)-r\left(c_{t}, a_{t}\right)\right]
$$

- EXP4 achieves a minimax-optimal regret bound of $\left.R_{T}=O(\sqrt{|\mathrm{~A}| T \log (|\Pi|})\right)$, also achieved by ILOVETOCONBANDITS [Agarwal et al. 2014] and computationally efficient
- Modification gives (ϵ, δ) - PAC algorithm w/ sample complexity $O\left(|\mathrm{~A}| \log (|\Pi| / \delta) / \epsilon^{2}\right)$, also see [Zanette et al. 2021]

Problems with Regret Minimization

Problems with Regret Minimization

- Minimax result! Does not adapt to hardness of instance

Problems with Regret Minimization

- Minimax result! Does not adapt to hardness of instance
- $O\left(|\mathrm{~A}| \log (|\Pi| / \delta) / \epsilon^{2}\right)$: true for any policy class, does not capture the difficulty for learning π_{*}

Problems with Regret Minimization

- Minimax result! Does not adapt to hardness of instance
- $O\left(|\mathrm{~A}| \log (|\Pi| / \delta) / \epsilon^{2}\right)$: true for any policy class, does not capture the difficulty for learning π_{*}
- We are interested in instance optimality, i.e. optimal for each instance Π

Problems with Regret Minimization

- Minimax result! Does not adapt to hardness of instance
- $O\left(|\mathrm{~A}| \log (|\Pi| / \delta) / \epsilon^{2}\right)$: true for any policy class, does not capture the difficulty for learning π_{*}
- We are interested in instance optimality, i.e. optimal for each instance Π
- Can construct an example, where any optimal regret algorithm won't be instance optimal!

Problems with Regret Minimization

- Minimax result! Does not adapt to hardness of instance
- $O\left(|\mathrm{~A}| \log (|\Pi| / \delta) / \epsilon^{2}\right)$: true for any policy class, does not capture the difficulty for learning π_{*}
- We are interested in instance optimality, i.e. optimal for each instance Π
- Can construct an example, where any optimal regret algorithm won't be instance optimal!

Theorem [Li et al. 2022] There exists an instance μ such that for any minimax regret algorithm that is $(0, \delta)-\mathrm{PAC}$, the stopping time satisfies $\mathbb{E}_{\mu}[\tau] \geq|\Pi|^{2} \log ^{2}(1 /(2.4 \delta)) / 4$, which is the lower bound squared.

Challenges

Challenges

- What is the statistical limits of learning, i.e. the instance-dependent lower bound?

Challenges

- What is the statistical limits of learning, i.e. the instance-dependent lower bound?
- Can we design sampling procedure to achieve this?

Challenges

- What is the statistical limits of learning, i.e. the instance-dependent lower bound?
- Can we design sampling procedure to achieve this?
- Computational efficiency - context space C could be infinite and Π could be large!

Challenges

－What is the statistical limits of learning，i．e．the instance－dependent lower bound？
－Can we design sampling procedure to achieve this？
－Computational efficiency－context space C could be infinite and Π could be large！
棚一杋一 —

Challenges

- What is the statistical limits of learning, i.e. the instance-dependent lower bound?
- Can we design sampling procedure to achieve this?
- Computational efficiency - context space C could be infinite and Π could be large!

Question: what is possible?

Our Contribution

- Show the first instance-dependent lower bound for PAC contextual bandit
- Present a simple algorithm that achieves this lower bound
- Design a computational efficient algorithm that also achieves this lower bound

Towards Lower Bound: Estimators

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\begin{aligned}
& \mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*} \\
& \quad \Rightarrow \hat{\theta}=\frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi\left(c_{t}, a_{t}\right) r_{t}
\end{aligned}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\begin{aligned}
& \mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*} \\
& \quad \Rightarrow \hat{\theta}=\frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi\left(c_{t}, a_{t}\right) r_{t}
\end{aligned}
$$

IPW estimator!

A Lower Bound

A Lower Bound

- For each $\pi, \pi^{\prime} \in \Pi$, define the gap $\Delta\left(\pi, \pi^{\prime}\right):=V\left(\pi^{\prime}\right)-V(\pi)$, let $\Delta(\pi):=\Delta\left(\pi, \pi_{*}\right)$

A Lower Bound

- For each $\pi, \pi^{\prime} \in \Pi$, define the gap $\Delta\left(\pi, \pi^{\prime}\right):=V\left(\pi^{\prime}\right)-V(\pi)$, let $\Delta(\pi):=\Delta\left(\pi, \pi_{*}\right)$
- Let $\phi_{\pi}:=\mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$, an estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

$$
\operatorname{Var}(\hat{\Delta}(\pi))=\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \operatorname{Var}(\hat{\theta})\left(\phi_{\pi_{*}}-\phi_{\pi}\right)=\frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{n}
$$

A Lower Bound

- For each $\pi, \pi^{\prime} \in \Pi$, define the gap $\Delta\left(\pi, \pi^{\prime}\right):=V\left(\pi^{\prime}\right)-V(\pi)$, let $\Delta(\pi):=\Delta\left(\pi, \pi_{*}\right)$
- Let $\phi_{\pi}:=\mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$, an estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

$$
\operatorname{Var}(\hat{\Delta}(\pi))=\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \operatorname{Var}(\hat{\theta})\left(\phi_{\pi_{*}}-\phi_{\pi}\right)=\frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{n}
$$

Theorem [Li et al. 2022] Let τ be the stopping time of the algorithm. Any $(0, \delta)$ PAC algorithm satisfies $\mathbb{E}[\tau] \geq \rho_{\Pi, 0} \log (1 / 2.4 \delta)$ where

$$
\rho_{\Pi, \epsilon}:=\min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \max _{\pi \in \Pi \backslash \pi_{*}} \frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{(\Delta(\pi) \vee \epsilon)^{2}} \text {. }
$$

A Lower Bound

- For each $\pi, \pi^{\prime} \in \Pi$, define the gap $\Delta\left(\pi, \pi^{\prime}\right):=V\left(\pi^{\prime}\right)-V(\pi)$, let $\Delta(\pi):=\Delta\left(\pi, \pi_{*}\right)$
- Let $\phi_{\pi}:=\mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$, an estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

$$
\operatorname{Var}(\hat{\Delta}(\pi))=\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \operatorname{Var}(\hat{\theta})\left(\phi_{\pi_{*}}-\phi_{\pi}\right)=\frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{n}
$$

Theorem [Li et al. 2022] Let τ be the stopping time of the algorithm. Any $(0, \delta)$ PAC algorithm satisfies $\mathbb{E}[\tau] \geq \rho_{\Pi, 0} \log (1 / 2.4 \delta)$ where

$$
\rho_{\Pi, \epsilon}:=\min _{p_{c} \in \triangle_{A}, \forall c \in C: \pi \in \Pi \backslash \pi_{*}} \frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p))^{-1}}^{2}}{(\Delta(\pi) \vee \epsilon)^{2}} \max _{\text {gap }} .
$$

An Instance-Optimal Algorithm

An Instance-Optimal Algorithm

An Instance-Optimal Algorithm

Input: П

An Instance-Optimal Algorithm

Input: П
Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$

An Instance-Optimal Algorithm

Input: П
Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

An Instance-Optimal Algorithm

Input: Π
Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}$ and n_{l} such that

An Instance-Optimal Algorithm

Input: Π
Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}$ and n_{l} such that

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
$$

An Instance-Optimal Algorithm

Input: Π
Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}$ and n_{l} such that

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
$$

An Instance-Optimal Algorithm

Input: П
Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}$ and n_{l} such that

Cl width for estimated gap

An Instance-Optimal Algorithm

Input: Π

Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}$ and n_{l} such that

Cl width for estimated gap
2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPW estimate $\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$

An Instance-Optimal Algorithm

Input: Π

Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}$ and n_{l} such that

Cl width for estimated gap

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \max _{\pi \in \Pi}\left(-\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)+\underset{\vdots}{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
$$

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPW estimate $\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

An Instance-Optimal Algorithm

Input: Π

Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}$ and n_{l} such that

Cl width for estimated gap

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \max _{\pi \in \Pi}\left(-\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)+\underset{\vdots}{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
$$

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPW estimate $\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\arg \min \hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)
$$

An Instance-Optimal Algorithm

Input: Π

Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)} \in \triangle_{\mathrm{A}}, \forall c \in \mathrm{C}$ and n_{l} such that

Cl width for estimated gap

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \max _{\pi \in \Pi}\left(-\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)+\begin{array}{l}
\vdots \\
\vdots \\
\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}
\end{array}\right) \leq 2^{-l}
$$

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPW estimate $\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\underset{\pi \in \Pi}{\arg \min } \hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)
$$

Theorem [Li et al. 2022] The above algorithm returns an (ϵ, δ)-PAC policy with at most $O\left(\rho_{\Pi, \epsilon} \log (|\Pi| / \delta) \log _{2}(1 / \epsilon)\right)$ samples.

An Instance-Optimal Algorithm

Returning the empirical best policy at the end \Rightarrow at least 2ϵ-good

Towards an efficient algorithm

Input: Π
Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)}$ and n_{l} such that

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \max _{\pi \in \Pi}\left(-\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
$$

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPW estimate $\hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\underset{\pi \in \Pi}{\arg \min } \hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)
$$

Towards an efficient algorithm

Input: Π
Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Choose $p_{c}^{(l)}$ and n_{l} such that

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
$$

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPW estimate $\hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\underset{\pi \in \Pi}{\arg \min } \hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)
$$

Towards an efficient algorithm

Input: Π

Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots \quad$ not efficient since cannot hold on to p_{c} for all $c \in \mathrm{C}$, also Π large!

1. Choose $p_{c}^{(l)}$ and n_{l} such that

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}\left(-\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\hat{\pi}_{l-1}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n_{l}}}\right) \leq 2^{-l}
$$

2. For $t \in\left[n_{l}\right]$, for each context c_{t}, sampling $a_{t} \sim p_{c_{t}}^{(l)}$ and compute IPW estimate $\hat{\Delta}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\arg \min \hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)
$$

Dual Problem

- Consider the dual formulation:

Primal $\min _{p_{c} \in \triangle_{A}, \forall \in \in \mathrm{C}} \max _{\pi \in \Pi}-\Delta\left(\pi, \pi_{*}\right)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n}}$

Dual Problem

- Consider the dual formulation:

$$
\text { Primal } \begin{aligned}
& \min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}-\Delta\left(\pi, \pi_{*}\right)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n}} \\
= & \min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi} \min _{\gamma_{\pi} \geq 0}-\Delta\left(\pi, \pi_{*}\right)+\gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2}+\frac{\log (1 / \delta)}{\gamma_{\pi} n} \quad 2 \sqrt{a b}=\min _{p 00}\left[\gamma a+\frac{b}{\gamma}\right]
\end{aligned}
$$

Dual Problem

- Consider the dual formulation:

$$
\begin{array}{ll}
\text { Primal } \quad & \min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi}-\Delta\left(\pi, \pi_{*}\right)+\sqrt{\frac{\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n}} \\
= & \min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi} \min _{\gamma_{\pi} \geq 0}-\Delta\left(\pi, \pi_{*}\right)+\gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2}+\frac{\log (1 / \delta)}{\gamma_{\pi} n} \\
\text { Dual } \quad 2 \sqrt{a b}=\min _{\gamma>0}\left[\gamma a+\frac{b}{\gamma}\right]
\end{array} \quad \max _{\lambda \in \triangle_{\Pi} \gamma_{\pi} \geq 0} \min _{p_{c} \in \triangle_{A}, \forall c \in C} \min _{\pi \in \Pi} \lambda_{\pi}\left(-\Delta\left(\pi, \pi_{*}\right)+\gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2}+\frac{\log (1 / \delta)}{2 \gamma_{\pi} n}\right) .
$$

Dual Problem

- Consider the dual formulation:

$$
\begin{aligned}
& \text { convex in } p_{c}, \forall c \in \mathrm{C} \text { and KKT } \\
& \text { conditions hold } \Rightarrow \text { strong duality holds! } \\
& =\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi} \min _{\gamma_{\pi} \geq 0}-\Delta\left(\pi, \pi_{*}\right)+\gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2}+\frac{\log (1 / \delta)}{\gamma_{\pi} n} \\
& 2 \sqrt{a b}=\min _{\gamma>0}\left[\gamma a+\frac{b}{\gamma}\right] \\
& \text { Dual } \quad \max _{\lambda \in \triangle_{\Pi}} \min _{\gamma_{\pi} \geq 0} \min _{p_{c} \in \triangle_{A}, \forall c \in C} \sum_{\pi \in \Pi} \lambda_{\pi}\left(-\Delta\left(\pi, \pi_{*}\right)+\gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2}+\frac{\log (1 / \delta)}{2 \gamma_{\pi} n}\right) .
\end{aligned}
$$

Dual Problem

- Consider the dual formulation:

$$
\text { Dual } \quad \max _{\lambda \in \triangle_{\Pi} \gamma_{\pi} \geq 0} \min _{p_{c} \in \triangle_{A}, \forall c \in C} g\left(\lambda, \gamma, p_{c}\right)
$$

$$
\begin{aligned}
& \text { convex in } p_{c}, \forall c \in \mathrm{C} \text { and KKT } \\
& \text { conditions hold } \Rightarrow \text { strong duality holds! }
\end{aligned}
$$

Dual Problem

- Consider the dual formulation:

$$
\begin{aligned}
& \text { Dual } \quad \max _{\lambda \in \triangle_{\Pi}} \min _{\gamma_{\pi} \geq 0} \min _{p_{c} \in \triangle_{A}, \forall c \in C} g\left(\lambda, \gamma, p_{c}\right) \text {. }
\end{aligned}
$$

Dual Problem

- Consider the dual formulation:

$$
\begin{aligned}
& \text { convex in } p_{c}, \forall c \in \mathrm{C} \text { and KKT } \\
& \text { conditions hold } \Rightarrow \text { strong duality holds! } \\
& =\min _{p_{c} \in \bigotimes_{A}, \forall c \in C_{0}} \max _{\pi \in \Pi} \min _{\gamma_{\pi} \geq 0}-\Delta\left(\pi, \pi_{*}\right)+\gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2}+\frac{\log (1 / \delta)}{\gamma_{\pi} n} \quad 2 \sqrt{a b}=\min _{\gamma>0}\left[\gamma a+\frac{b}{\gamma}\right] \\
& \text { problem of dimension }|\mathrm{C}| \times|\mathrm{A}| \\
& \text { Dual } \quad \max _{: \lambda \in \triangle_{n}: \gamma \gamma_{\pi} \geq 0} \min _{p_{c} \in \triangle_{A}, \forall c \in C} \min g\left(\lambda, \gamma, p_{c}\right) \text {. } \\
& \text { problem of dimension }|\Pi|
\end{aligned}
$$

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:
$\min _{p_{c} \in \triangle_{A}, \forall c \in C} g\left(\lambda, \gamma, p_{c}\right)=h(\lambda, \gamma)$

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\begin{aligned}
\min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi_{*}}\right\|_{A(p)^{-1}}^{2} & =\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{\sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left(\mathbf{1}\{\pi(c)=a\}+\mathbf{1}\left\{\pi_{*}(c)=a\right\}-2 \mathbf{1}\left\{\pi(c)=\pi_{*}(c)\right\}\right)}\right)^{2}\right] \\
& =: \mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right]
\end{aligned}
$$

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\begin{aligned}
& \min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left\|\phi_{\pi}-\phi_{\pi *}\right\|_{A(p)^{-1}}^{2}=\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{\sum_{\pi \in \Pi} \lambda_{\pi} \gamma_{\pi}\left(\mathbf{1}\{\pi(c)=a\}+\mathbf{1}\left\{\pi_{*}(c)=a\right\}-2 \mathbf{1}\left\{\pi(c)=\pi_{*}(c)\right\}\right)}\right)^{2}\right] \\
&=: \mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right] \\
& \text { Implicitly maintain } p_{c} \text { for all } c \in \mathrm{C} \text { simultaneously! }
\end{aligned}
$$

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\min _{p_{c} \in \Delta_{A} \forall c \in C} g\left(\lambda, \gamma, p_{c}\right)=h(\lambda, \gamma)
$$

Implicitly maintain p_{c} for all $c \in \mathrm{C}$ simultaneously!

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\min _{p_{c} \in \Delta_{A}, \gamma \in \in C} g\left(\lambda, \gamma, p_{c}\right)=h(\lambda, \gamma)
$$

- Dual becomes

```
max min h(\lambda,\gamma)
\lambda\in\mp@subsup{\Delta}{\Pi}{}
```


Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\min _{p_{c} \in \Delta_{A}, v \in \in} g\left(\lambda, \gamma, p_{c}\right)=h(\lambda, \gamma)
$$

Implicitly maintain p_{c} for all $c \in \mathrm{C}$ simultaneously!

- Dual becomes
$\max _{\lambda \in \Delta_{\Pi}} \min _{\gamma} \sum_{\pi \in \Pi} \lambda_{\pi}\left(-\Delta\left(\pi, \pi_{*}\right)+\frac{\log (1 / \delta)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right]$

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in C} g\left(\lambda, \gamma, p_{c}\right)=h(\lambda, \gamma)
$$

Implicitly maintain p_{c} for all $c \in \mathrm{C}$ simultaneously!

- Dual becomes

$$
\begin{gathered}
\max _{\lambda \in \Delta_{\Pi}} \min _{\gamma} \sum_{\pi \in \Pi} \lambda_{\pi}\left(-\Delta\left(\pi, \pi_{*}\right)+\frac{\log (1 / \delta)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right] \\
\text { concave in } \lambda \text { and locally strongly convex in } \gamma!
\end{gathered}
$$

Compute Action Distribution

- If we solve for p_{c} for all c, we have an analytical solution:

$$
\min _{p_{c} \in \triangle_{A}, \forall c \in C} g\left(\lambda, \gamma, p_{c}\right)=h(\lambda, \gamma)
$$

Implicitly maintain p_{c} for all $c \in \mathrm{C}$ simultaneously!

- Dual becomes
$\max _{\lambda \in \Delta_{\Pi}} \min _{\gamma} \sum_{\pi \in \Pi} \lambda_{\pi}\left(-\Delta\left(\pi, \pi_{*}\right)+\frac{\log (1 / \delta)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right]$
concave in λ and locally strongly convex in γ !

Frank-Wolfe

minimize $f(x)$

subject to $x \in \mathscr{X}$

Frank-Wolfe

minimize $f(x)$

subject to $x \in \mathscr{X}$

Frank-Wolfe

$$
\begin{gathered}
\operatorname{minimize} f(x) \\
\text { subject to } x \in \mathscr{X}
\end{gathered}
$$

- Update one coordinate at a time
- Gives us a sparse yet good enough solution λ
- Plug in solution λ in the closed-form gives us $p_{c} \in \triangle_{\mathrm{A}}$

Frank-Wolfe

$\operatorname{minimize} f(x)$
subject to $x \in \mathscr{X}$

- Update one coordinate at a time

- Gives us a sparse yet good enough solution λ
- Plug in solution λ in the closed-form gives us $p_{c} \in \triangle_{\mathrm{A}}$

Towards an efficient algorithm

Towards an efficient algorithm

- $\boldsymbol{a r g m a x}$ oracle: given contexts and cost vectors $\left(c_{1}, v_{1}\right), \cdots,\left(c_{n}, v_{n}\right) \in \mathrm{C} \times \mathbb{R}^{|\mathrm{A}|}$, returns $\underset{\pi \in \Pi}{\arg \max } \sum_{t=1}^{n} v_{t}\left(\pi\left(c_{t}\right)\right)$

Towards an efficient algorithm

- $\boldsymbol{a r g m a x}$ oracle: given contexts and cost vectors $\left(c_{1}, v_{1}\right), \cdots,\left(c_{n}, v_{n}\right) \in \mathrm{C} \times \mathbb{R}^{|\mathrm{A}|}$, returns $\underset{\pi \in \Pi}{\arg \max } \sum_{i=1}^{n} v_{t}\left(\pi\left(c_{t}\right)\right)$
- Can be computed using cost-sensitive classification

Towards an efficient algorithm

- $\boldsymbol{a r g m a x}$ oracle: given contexts and cost vectors $\left(c_{1}, v_{1}\right), \cdots,\left(c_{n}, v_{n}\right) \in \mathrm{C} \times \mathbb{R}^{|\mathrm{A}|}$, returns $\underset{\pi \in \Pi}{\arg \max } \sum_{t=1}^{n} v_{t}\left(\pi\left(c_{t}\right)\right)$
- Can be computed using cost-sensitive classification
- Can estimate the context distribution using offline data \mathscr{D}

Towards an efficient algorithm

- argmax oracle: given contexts and cost vectors $\left(c_{1}, v_{1}\right), \cdots,\left(c_{n}, v_{n}\right) \in \mathrm{C} \times \mathbb{R}^{|\mathrm{A}|}$, returns $\underset{\pi \in \Pi}{\arg \max } \sum_{t=1}^{n} v_{t}\left(\pi\left(c_{t}\right)\right)$
- Can be computed using cost-sensitive classification
- Can estimate the context distribution using offline data \mathscr{D}
- Final design we're solving:
$\max _{\lambda \in \Delta_{\Pi}} \min _{\gamma} \sum_{\pi \in \Pi} \lambda_{\pi}\left(-\hat{\Delta}\left(\pi, \pi_{*}\right)+\frac{\log (1 / \delta)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu_{\Omega}}\left[\left(\sum_{a \in \mathscr{A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right]$

An efficient algorithm

An efficient algorithm

Input: П

An efficient algorithm

```
Input: П
Initialize \(\Pi_{1}=\Pi\), estimate \(\hat{\pi}_{0}\)
```


An efficient algorithm

```
Input: П
Initialize 泣= П, estimate }\mp@subsup{\hat{\pi}}{0}{
for l=1,2,\cdots
```


An efficient algorithm

```
Input: П
Initialize 梔= \Pi, estimate }\mp@subsup{\hat{\pi}}{0}{
for l=1,2,\cdots
1. Solve \(\lambda_{l}, \gamma_{l}\) and choose \(n_{l}\) such that
```


An efficient algorithm

Input: П

Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Solve λ_{l}, γ_{l} and choose n_{l} such that

$$
\sum_{\pi \in \Pi} \lambda_{\pi}\left(-\hat{\Delta}_{l-1}\left(\pi, \hat{\pi}_{l-1}\right)+\frac{\log \left(1 / \delta_{l}\right)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu_{\varnothing}}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right] \leq 2^{-l}
$$

An efficient algorithm

Input: П

Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Solve λ_{l}, γ_{l} and choose n_{l} such that

$$
\sum_{\pi \in \Pi} \lambda_{\pi}\left(-\hat{\Delta}_{l-1}\left(\pi, \hat{\pi}_{l-1}\right)+\frac{\log \left(1 / \delta_{l}\right)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu_{\varnothing}}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right] \leq 2^{-l}
$$

An efficient algorithm

Input: Π

Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Solve λ_{l}, γ_{l} and choose n_{l} such that

$$
\sum_{\pi \in \Pi} \lambda_{\pi}\left(-\hat{\Delta}_{l-1}\left(\pi, \hat{\pi}_{l-1}\right)+\frac{\log \left(1 / \delta_{l}\right)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu_{\mathscr{D}}}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} f_{a}^{(c)}}\right)^{2}\right] \leq 2^{-l}
$$

2. For $s \in\left[n_{l}\right]$, for each context $c_{s^{\prime}}$ sampling $a_{s} \sim p_{c_{s}}^{(l)}$ where $p_{c_{s}, a_{s}}^{(l)} \propto \sqrt{\left(\lambda_{l} \odot \gamma_{l}\right)^{\top} t_{a_{s}}^{\left(c_{s}\right)}}$ and compute IPW estimate $\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$

An efficient algorithm

Input: Π

Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Solve λ_{l}, γ_{l} and choose n_{l} such that

$$
\sum_{\pi \in \Pi} \lambda_{\pi}\left(-\hat{\Delta}_{l-1}\left(\pi, \hat{\pi}_{l-1}\right)+\frac{\log \left(1 / \delta_{l}\right)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu_{\mathscr{D}}}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} f_{a}^{(c)}}\right)^{2}\right] \leq 2^{-l}
$$

2. For $s \in\left[n_{l}\right]$, for each context $c_{s^{\prime}}$ sampling $a_{s} \sim p_{c_{s}}^{(l)}$ where $p_{c_{s}, a_{s}}^{(l)} \propto \sqrt{\left(\lambda_{l} \odot \gamma_{l}\right)^{\top} t_{a_{s}}^{\left(c_{s}\right)}}$ and compute IPW estimate $\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

An efficient algorithm

Input: Π

Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Solve λ_{l}, γ_{l} and choose n_{l} such that

$$
\sum_{\pi \in \Pi} \lambda_{\pi}\left(-\hat{\Delta}_{l-1}\left(\pi, \hat{\pi}_{l-1}\right)+\frac{\log \left(1 / \delta_{l}\right)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu_{\mathscr{D}}}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right] \leq 2^{-l}
$$

2. For $s \in\left[n_{l}\right]$, for each context $c_{s^{\prime}}$, sampling $a_{s} \sim p_{c_{s}}^{(l)}$ where $p_{c_{s}, a_{s}}^{(l)} \propto \sqrt{\left(\lambda_{l} \odot \gamma_{l}\right)^{\top} t_{a_{s}}^{\left(c_{s}\right)}}$ and compute IPW estimate $\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\underset{\pi \in \Pi}{\arg \min } \hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)
$$

An efficient algorithm

Input: П
Initialize $\Pi_{1}=\Pi$, estimate $\hat{\pi}_{0}$
for $l=1,2, \cdots$

1. Solve λ_{l}, γ_{l} and choose n_{l} such that

$$
\sum_{\pi \in \Pi} \lambda_{\pi}\left(-\hat{\Delta}_{l-1}\left(\pi, \hat{\pi}_{l-1}\right)+\frac{\log \left(1 / \delta_{l}\right)}{\gamma_{\pi} n}\right)+\mathbb{E}_{c \sim \nu_{\Omega}}\left[\left(\sum_{a \in \mathrm{~A}} \sqrt{(\lambda \odot \gamma)^{\top} t_{a}^{(c)}}\right)^{2}\right] \leq 2^{-l}
$$

2. For $s \in\left[n_{l}\right]$, for each context $c_{s^{\prime}}$ sampling $a_{s} \sim p_{c_{s}}^{(l)}$ where $p_{c_{s}, a_{s}}^{(l)} \propto \sqrt{\left(\lambda_{l} \odot \gamma_{l}\right)^{\top} t_{a_{s}}^{\left(c_{s}\right)}}$ and compute IPW estimate $\hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)$ for each $\pi \in \Pi$
3. Update

$$
\hat{\pi}_{l}=\underset{\pi \in \Pi}{\arg \min } \hat{\Delta}_{l}\left(\pi, \hat{\pi}_{l-1}\right)
$$

Theorem [Li et al. 2022] The above algorithm returns an (ϵ, δ)-PAC policy with at most $O\left(\rho_{\Pi, \epsilon} \log (|\Pi| / \delta) \log _{2}(1 / \epsilon)\right)$ samples and $\operatorname{poly}\left(|\mathrm{A}|, \epsilon^{-1}, \log (1 / \delta), \log (|\Pi|)\right)$ calls to argmax oracle.

Conclusion

- Propose a new instance-dependent lower bound for PAC contextual bandits
- Design a computationally efficient algorithm and show that it is instance-optimal

Outline

- Project 1: Instance-optimal PAC Contextual bandits
- Project 2: Estimation of the mean of subsidiary outcome
- Future Work

Estimation of the mean of subsidiary outcome under an optimal policy for primary outcome

Zhaoqi Li, Alex Luedtke

Motivation

- In biomedical trials, it is of interest to identify the best treatment to induce disease remission, i.e. identifying the optimal policy
- However, side effects of certain medicine are also concerns
- Important to investigate subsidiary outcomes

Problem Notations

Problem Notations

- More formally, let $X \in \mathscr{X}$ be some covariates, $A \in\{0,1\}$ be a binary action, $Y \in \mathscr{Y}$ be an observed outcome, and policy $\pi: \mathscr{X} \rightarrow\{0,1\}$

Problem Notations

- More formally, let $X \in \mathscr{X}$ be some covariates, $A \in\{0,1\}$ be a binary action, $Y \in \mathscr{Y}$ be an observed outcome, and policy $\pi: \mathscr{X} \rightarrow\{0,1\}$
- Suppose $Y=\left(Y^{*}, Y^{\dagger}\right)$ is a primary-subsidiary outcome pair,

Problem Notations

- More formally, let $X \in \mathscr{X}$ be some covariates, $A \in\{0,1\}$ be a binary action, $Y \in \mathscr{Y}$ be an observed outcome, and policy $\pi: \mathscr{X} \rightarrow\{0,1\}$
remission rate
- Suppose $Y=\left(Y^{*}, Y^{\dagger}\right)$ is a primary-subsidiary outcome pair,

Problem Notations

- More formally, let $X \in \mathscr{X}$ be some covariates, $A \in\{0,1\}$ be a binary action, $Y \in \mathscr{Y}$ be an observed outcome, and policy $\pi: \mathscr{X} \rightarrow\{0,1\}$
remission rate side effects
- Suppose $Y=\left(Y^{*}, Y^{\dagger}\right)$ is a primary-subsidiary outcome pair,

Problem Notations

- More formally, let $X \in \mathscr{X}$ be some covariates, $A \in\{0,1\}$ be a binary action, $Y \in \mathscr{Y}$ be an observed outcome, and policy $\pi: \mathscr{X} \rightarrow\{0,1\}$
remission rate side effects
- Suppose $Y=\left(Y^{*}, Y^{\dagger}\right)$ is a primary-subsidiary outcome pair,
- let Φ_{π} be some primary performance metric for π, e.g. $\mathbb{E}\left[\mathbb{E}\left[Y^{*} \mid A=\pi(X), X\right]\right]$

Problem Notations

- More formally, let $X \in \mathscr{X}$ be some covariates, $A \in\{0,1\}$ be a binary action, $Y \in \mathscr{Y}$ be an observed outcome, and policy $\pi: \mathscr{X} \rightarrow\{0,1\}$
remission rate
- Suppose $Y=\left(Y^{*}, Y^{\dagger}\right)$ is a primary-subsidiary outcome pair,
- let Φ_{π} be some primary performance metric for π, e.g. $\mathbb{E}\left[\mathbb{E}\left[Y^{*} \mid A=\pi(X), X\right]\right]$
- let Ψ_{π} be some subsidiary performance metric for π, e.g. $\mathbb{E}\left[\mathbb{E}\left[Y^{\dagger} \mid A=\pi(X), X\right]\right]$

Problem Notations

- More formally, let $X \in \mathscr{X}$ be some covariates, $A \in\{0,1\}$ be a binary action, $Y \in \mathscr{Y}$ be an observed outcome, and policy $\pi: \mathscr{X} \rightarrow\{0,1\}$
remission rate
side effects
- Suppose $Y=\left(Y^{*}, Y^{\dagger}\right)$ is a primary-subsidiary outcome pair,
- let Φ_{π} be some primary performance metric for π, e.g. $\mathbb{E}\left[\mathbb{E}\left[Y^{*} \mid A=\pi(X), X\right]\right]$
- let Ψ_{π} be some subsidiary performance metric for π, e.g. $\mathbb{E}\left[\mathbb{E}\left[Y^{\dagger} \mid A=\pi(X), X\right]\right]$
- let Π^{*} be the set of optimal policies with respect to Φ_{π}

Problem Notations

- More formally, let $X \in \mathscr{X}$ be some covariates, $A \in\{0,1\}$ be a binary action, $Y \in \mathscr{Y}$ be an observed outcome, and policy $\pi: \mathscr{X} \rightarrow\{0,1\}$
remission rate
side effects
- Suppose $Y=\left(Y^{*}, Y^{\dagger}\right)$ is a primary-subsidiary outcome pair,
- let Φ_{π} be some primary performance metric for π, e.g. $\mathbb{E}\left[\mathbb{E}\left[Y^{*} \mid A=\pi(X), X\right]\right]$
- let Ψ_{π} be some subsidiary performance metric for π, e.g. $\mathbb{E}\left[\mathbb{E}\left[Y^{\dagger} \mid A=\pi(X), X\right]\right]$
- let Π^{*} be the set of optimal policies with respect to Φ_{π}

$$
\text { Goal: conduct inference on }\left\{\Psi_{\pi}: \pi \in \Pi^{*}\right\} \text { ! }
$$

Related Work

Related Work

- Estimate the mean outcome under an optimal policy:

Related Work

- Estimate the mean outcome under an optimal policy:
- corresponding to conducting inference on $\left\{\Phi_{\pi}: \pi \in \Pi^{*}\right\}$

Related Work

- Estimate the mean outcome under an optimal policy:
- corresponding to conducting inference on $\left\{\Phi_{\pi}: \pi \in \Pi^{*}\right\}$
- the standard one-step estimator is efficient [Luedtke et al. 2016]

Related Work

- Estimate the mean outcome under an optimal policy:
- corresponding to conducting inference on $\left\{\Phi_{\pi}: \pi \in \Pi^{*}\right\}$
- the standard one-step estimator is efficient [Luedtke et al. 2016]
- Estimate $\left(Y^{*}, Y^{\dagger}\right)$ simultaneously:

Related Work

- Estimate the mean outcome under an optimal policy:
- corresponding to conducting inference on $\left\{\Phi_{\pi}: \pi \in \Pi^{*}\right\}$
- the standard one-step estimator is efficient [Luedtke et al. 2016]
- Estimate $\left(Y^{*}, Y^{\dagger}\right)$ simultaneously:
- Multi-objective optimization

Related Work

- Estimate the mean outcome under an optimal policy:
- corresponding to conducting inference on $\left\{\Phi_{\pi}: \pi \in \Pi^{*}\right\}$
- the standard one-step estimator is efficient [Luedtke et al. 2016]
- Estimate $\left(Y^{*}, Y^{\dagger}\right)$ simultaneously:
- Multi-objective optimization
- Efficient algorithms exist to find the solution [Gunantara et al. 2018]

Objective

Objective

- Can we use a similar one-step estimator to estimate $\left\{\Psi_{\pi}: \pi \in \Pi^{*}\right\}$ and show that it is efficient, i.e. with provably minimum variance?

Objective

- Can we use a similar one-step estimator to estimate $\left\{\Psi_{\pi}: \pi \in \Pi^{*}\right\}$ and show that it is efficient, i.e. with provably minimum variance?

Yes, under certain (strong) margin conditions.

Objective

- Can we use a similar one-step estimator to estimate $\left\{\Psi_{\pi}: \pi \in \Pi^{*}\right\}$ and show that it is efficient, i.e. with provably minimum variance?

Yes, under certain (strong) margin conditions.

- Can we perform inference without conditions assumed previously?

Objective

- Can we use a similar one-step estimator to estimate $\left\{\Psi_{\pi}: \pi \in \Pi^{*}\right\}$ and show that it is efficient, i.e. with provably minimum variance?

Yes, under certain (strong) margin conditions.

- Can we perform inference without conditions assumed previously?

Yes, using a uniform band approach.

Objective

- Can we use a similar one-step estimator to estimate $\left\{\Psi_{\pi}: \pi \in \Pi^{*}\right\}$ and show that it is efficient, i.e. with provably minimum variance?

Yes, under certain (strong) margin conditions.

- Can we perform inference without conditions assumed previously?

Yes, using a uniform band approach.

- Can we improve on the previous method to provide a tighter confidence interval?

Objective

- Can we use a similar one-step estimator to estimate $\left\{\Psi_{\pi}: \pi \in \Pi^{*}\right\}$ and show that it is efficient, i.e. with provably minimum variance?

Yes, under certain (strong) margin conditions.

- Can we perform inference without conditions assumed previously?

> Yes, using a uniform band approach.

- Can we improve on the previous method to provide a tighter confidence interval?

> Yes, using a joint approach.

Towards an efficient estimator

Towards an efficient estimator

- Let $\pi^{*} \in \Pi^{*}$ be a Φ-optimal policy

Towards an efficient estimator

- Let $\pi^{*} \in \Pi^{*}$ be a Φ-optimal policy
- Let $\hat{\pi}$ be some estimate of π^{*} and $\hat{\psi}_{\hat{\pi}}$ be some estimator of $\Psi_{\pi^{*}}$, then

Towards an efficient estimator

- Let $\pi^{*} \in \Pi^{*}$ be a Φ-optimal policy
- Let $\hat{\pi}$ be some estimate of π^{*} and $\hat{\psi}_{\hat{\pi}}$ be some estimator of $\Psi_{\pi^{*}}$, then

$$
\hat{\psi}_{\hat{\pi}}-\Psi_{\pi^{*}}=\left[\hat{\psi}_{\hat{\pi}}-\Psi_{\hat{\pi}}\right] \quad+\quad\left[\Psi_{\hat{\pi}}-\Psi_{\pi^{*}}\right]
$$

Towards an efficient estimator

- Let $\pi^{*} \in \Pi^{*}$ be a Φ-optimal policy
- Let $\hat{\pi}$ be some estimate of π^{*} and $\hat{\psi}_{\hat{\pi}}$ be some estimator of $\Psi_{\pi^{*}}$, then

$$
\begin{gathered}
\hat{\psi}_{\hat{\pi}}-\Psi_{\pi^{*}}=\left[\hat{\psi}_{\hat{\pi}}-\Psi_{\hat{\pi}}\right]+\left[\Psi_{\hat{\pi}}-\Psi_{\pi^{*}}\right] \\
\text { small if } \hat{\psi} \text { is good }
\end{gathered}
$$

Towards an efficient estimator

- Let $\pi^{*} \in \Pi^{*}$ be a Φ-optimal policy
- Let $\hat{\pi}$ be some estimate of π^{*} and $\hat{\psi}_{\hat{\pi}}$ be some estimator of $\Psi_{\pi^{*}}$, then

$$
\hat{\psi}_{\hat{\pi}}-\Psi_{\pi^{*}}=\left[\hat{\psi}_{\hat{\pi}}-\Psi_{\hat{\pi}}\right] \quad+\Psi_{\hat{\pi}}-\Psi_{\pi^{*}}
$$

small if $\hat{\psi}$ is good small if $\hat{\pi}$ is good and Ψ is flat around π^{*}

Towards an efficient estimator

- Let $\pi^{*} \in \Pi^{*}$ be a Φ-optimal policy
- Let $\hat{\pi}$ be some estimate of π^{*} and $\hat{\psi}_{\hat{\pi}}$ be some estimator of $\Psi_{\pi^{*}}$, then

$$
\hat{\psi}_{\hat{\pi}}-\Psi_{\pi^{*}}=\left[\hat{\psi}_{\hat{\pi}}-\Psi_{\hat{\pi}}\right] \quad+\Psi_{\hat{\pi}}-\Psi_{\pi^{*}}
$$

small if $\hat{\psi}$ is good small if $\hat{\pi}$ is good and Ψ is flat around π^{*}

Towards an efficient estimator

- Let $\pi^{*} \in \Pi^{*}$ be a Φ-optimal policy
- Let $\hat{\pi}$ be some estimate of π^{*} and $\hat{\psi}_{\hat{\pi}}$ be some estimator of $\Psi_{\pi^{*}}$, then

$$
\hat{\psi}_{\hat{\pi}}-\Psi_{\pi^{*}}=\left[\hat{\psi}_{\hat{\pi}}-\Psi_{\hat{\pi}}\right] \quad+\Psi_{\hat{\pi}}-\Psi_{\pi^{*}}
$$

small if $\hat{\psi}$ is good small if $\hat{\pi}$ is good and Ψ is flat around π^{*}

Towards an efficient estimator

- Let $\pi^{*} \in \Pi^{*}$ be a Φ-optimal policy
- Let $\hat{\pi}$ be some estimate of π^{*} and $\hat{\psi}_{\hat{\pi}}$ be some estimator of $\Psi_{\pi^{*}}$, then

$$
\left.\hat{\psi}_{\hat{\pi}}-\Psi_{\pi^{*}}=\left[\hat{\psi}_{\hat{\pi}}-\Psi_{\hat{\pi}}\right] \quad+\Psi_{\hat{\pi}}-\Psi_{\pi^{*}}\right]
$$

small if $\hat{\psi}$ is good small if $\hat{\pi}$ is good and Ψ is flat around π^{*}

- When estimating $\Phi_{\pi^{*}}$, since π^{*} optimizes Φ, we only need guarantees for the behavior of Φ on regions where estimation for π^{*} is hard

Towards an efficient estimator

- Let $\pi^{*} \in \Pi^{*}$ be a Φ-optimal policy
- Let $\hat{\pi}$ be some estimate of π^{*} and $\hat{\psi}_{\hat{\pi}}$ be some estimator of $\Psi_{\pi^{*}}$, then

$$
\left.\hat{\psi}_{\hat{\pi}}-\Psi_{\pi^{*}}=\left[\hat{\psi}_{\hat{\pi}}-\Psi_{\hat{\lambda}}\right] \quad+\Psi_{\hat{\pi}}-\Psi_{\pi^{*}}\right]
$$

small if $\hat{\psi}$ is good

- When estimating $\Phi_{\pi^{*}}$, since π^{*} optimizes Φ, we only need guarantees for the behavior of Φ on regions where estimation for π^{*} is hard
- Since π^{*} is not necessarily an optimizer for Ψ, we need much stronger conditions to guarantee the behavior of Ψ on the entire space

Estimation of the optimal policy

Estimation of the optimal policy

- Define the CATE function $q_{b}(x):=\mathbb{E}\left[Y^{*} \mid A=1, X=x\right]-\mathbb{E}\left[Y^{*} \mid A=0, X=x\right]$
- $q_{b}(x)=0 \Rightarrow A$ has no impact on $Y^{*} \Rightarrow$ estimation of π^{*} hard!

Estimation of the optimal policy

- Define the CATE function $q_{b}(x):=\mathbb{E}\left[Y^{*} \mid A=1, X=x\right]-\mathbb{E}\left[Y^{*} \mid A=0, X=x\right]$
- $q_{b}(x)=0 \Rightarrow A$ has no impact on $Y^{*} \Rightarrow$ estimation of π^{*} hard!

Condition 1 (Margin Condition of Y^{*}). For some $\beta>0$,

$$
\operatorname{Pr}\left(0 \leq\left|q_{b}(X)\right| \leq t\right) \lesssim t^{\beta} \quad \forall t>0
$$

Estimation of the optimal policy

- Define the CATE function $q_{b}(x):=\mathbb{E}\left[Y^{*} \mid A=1, X=x\right]-\mathbb{E}\left[Y^{*} \mid A=0, X=x\right]$
- $q_{b}(x)=0 \Rightarrow A$ has no impact on $Y^{*} \Rightarrow$ estimation of π^{*} hard!

Condition 1 (Margin Condition of Y^{*}). For some $\beta>0$,

$$
\operatorname{Pr}\left(0 \leq\left|q_{b}(X)\right| \leq t\right) \lesssim t^{\beta} \quad \forall t>0
$$

- Condition 1 ensures that the mass of $q_{b}(X)$ concentrated around zero is small

Guarantees for flatness of Ψ

Guarantees for flatness of Ψ

- Similarly, let $s_{b}(x):=\mathbb{E}\left[Y^{\dagger} \mid A=1, X=x\right]-\mathbb{E}\left[Y^{\dagger} \mid A=0, X=x\right]$
- Condition 2 quantifies the amount of "flatness" that Ψ needs by relating the shape of Ψ with Φ

Guarantees for flatness of Ψ

- Similarly, let $s_{b}(x):=\mathbb{E}\left[Y^{\dagger} \mid A=1, X=x\right]-\mathbb{E}\left[Y^{\dagger} \mid A=0, X=x\right]$
- Condition 2 quantifies the amount of "flatness" that Ψ needs by relating the shape of Ψ with Φ

Condition 2 (Margin Condition between Y^{\dagger} and Y^{*}). For some $\alpha>2$,

$$
\operatorname{Pr}_{0}\left(\left|s_{b}(X)\right| \geq t\left|q_{b}(X)\right|\right) \leq t^{-\alpha}, \forall t>1 .
$$

Guarantees for flatness of Ψ

- Similarly, let $s_{b}(x):=\mathbb{E}\left[Y^{\dagger} \mid A=1, X=x\right]-\mathbb{E}\left[Y^{\dagger} \mid A=0, X=x\right]$
- Condition 2 quantifies the amount of "flatness" that Ψ needs by relating the shape of Ψ with Φ

Condition 2 (Margin Condition between Y^{\dagger} and Y^{*}). For some $\alpha>2$,

$$
\operatorname{Pr}_{0}\left(\left|s_{b}(X)\right| \geq t\left|q_{b}(X)\right|\right) \leq t^{-\alpha}, \forall t>1 .
$$

- It ensures that when estimation problem is hard (i.e. $q_{b}(x)$ small for some x), $\left|s_{b}(x)\right|$ is not too large, i.e. the impact of a policy on this x is controlled

Efficient estimator

- Under these conditions (plus some regularity conditions), we can show that the similar one-step estimator for $\Psi_{\pi^{*}}$ is efficient given dataset $\mathrm{D}:=\left\{x_{i}, a_{i}, y_{i}\right\}_{i=1}^{n}$
- Let $s(a, x)=\mathbb{E}\left[Y^{\dagger} \mid A=a, X=x\right]$ be the expected subsidiary outcome, $p(a \mid x)=\operatorname{Pr}(A=a \mid X=x)$ be the conditional probability, and π_{n}^{*} be the best policy under D

Efficient estimator

- Under these conditions (plus some regularity conditions), we can show that the similar one-step estimator for $\Psi_{\pi^{*}}$ is efficient given dataset $\mathrm{D}:=\left\{x_{i}, a_{i}, y_{i}\right\}_{i=1}^{n}$
- Let $s(a, x)=\mathbb{E}\left[Y^{\dagger} \mid A=a, X=x\right]$ be the expected subsidiary outcome, $p(a \mid x)=\operatorname{Pr}(A=a \mid X=x)$ be the conditional probability, and π_{n}^{*} be the best policy under D

Theorem (Efficient estimator of $\Psi_{\pi^{*}}$). Under conditions including Condition 1 and 2, the one-step estimator

$$
\begin{gathered}
\hat{\psi}_{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{1\left\{a_{i}=\pi_{n}^{*}\left(x_{i}\right)\right\}}{p\left(a_{i} \mid x_{i}\right)}\left(y_{i}^{\dagger}-s\left(a_{i}, x_{i}\right)\right)+s\left(\pi_{n}^{*}\left(x_{i}\right), x_{i}\right) \\
\text { is an efficient estimator of } \Psi_{\pi^{*}}
\end{gathered}
$$

Inference without margin condition

Inference without margin condition

- Suppose we have good estimates $\hat{\phi}_{\pi}$ of $\Phi_{\pi}, \hat{\psi}_{\pi}$ of Ψ_{π}

Inference without margin condition

- Suppose we have good estimates $\hat{\phi}_{\pi}$ of $\Phi_{\pi}, \hat{\psi}_{\pi}$ of Ψ_{π}
- Two-stage uniform confidence band

Inference without margin condition

- Suppose we have good estimates $\hat{\phi}_{\pi}$ of $\Phi_{\pi}, \hat{\psi}_{\pi}$ of Ψ_{π}
- Two-stage uniform confidence band
- First stage: eliminate policies that are unlikely to be optimal

Inference without margin condition

- Suppose we have good estimates $\hat{\phi}_{\pi}$ of $\Phi_{\pi}, \hat{\psi}_{\pi}$ of Ψ_{π}
- Two-stage uniform confidence band
- First stage: eliminate policies that are unlikely to be optimal

Inference without margin condition

- Suppose we have good estimates $\hat{\phi}_{\pi}$ of $\Phi_{\pi}, \hat{\psi}_{\pi}$ of Ψ_{π}
- Two-stage uniform confidence band
- First stage: eliminate policies that are unlikely to be optimal

Inference without margin condition

- Suppose we have good estimates $\hat{\phi}_{\pi}$ of $\Phi_{\pi}, \hat{\psi}_{\pi}$ of Ψ_{π}
- Two-stage uniform confidence band
- First stage: eliminate policies that are unlikely to be optimal

Inference without margin condition

- Suppose we have good estimates $\hat{\phi}_{\pi}$ of $\Phi_{\pi}, \hat{\psi}_{\pi}$ of Ψ_{π}
- Two-stage uniform confidence band
- First stage: eliminate policies that are unlikely to be optimal

- Second stage: construct a uniform confidence interval for the remaining policies

Uniform Confidence Band

Uniform Confidence Band

- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies

Uniform Confidence Band

- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \hat{\phi}_{\pi}+\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}} \geq \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right]\right\}$.

Uniform Confidence Band

- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \hat{\phi}_{\pi}+\frac{\vdots \dot{\sigma}_{\pi} t_{1-\beta / 2}}{n^{1 / 2}} \geq \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi^{\prime}} t_{1-\beta / 2}}{n^{1 / 2}}\right]\right\}$.

Uniform Confidence Band

- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \hat{\phi}_{\pi}+\frac{\begin{array}{c}\text { standard deviation w.r.t. } \hat{\phi} \cdot \ldots\end{array}{ }^{1-\beta / 2 \text { quantile }}}{n^{1 / 2}} \geq \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi^{\prime}} t_{1-\beta / 2}}{n^{1 / 2}}\right]\right\}$.

Uniform Confidence Band

- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies

$$
\text { standard deviation w.r.t. } \hat{\phi} \quad 1-\beta / 2 \text { quantile }
$$

- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \hat{\phi}_{\pi}+\frac{\sigma_{\pi} t_{1}-\beta / 2}{n^{1 / 2}} \geq \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right]\right\}$.
- Second stage: construct a uniform confidence interval for the remaining policies

Uniform Confidence Band

- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies

$$
\text { standard deviation w.r.t. } \hat{\phi} \quad 1-\beta / 2 \text { quantile }
$$

- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \hat{\phi}_{\pi}+\frac{\hat{\sigma}_{\pi} t_{1}-\beta / 2}{n^{1 / 2}} \geq \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi^{\prime}} t_{1-\beta / 2}}{n^{1 / 2}}\right]\right\}$.
- Second stage: construct a uniform confidence interval for the remaining policies

$$
\left[\inf _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}-\frac{\tilde{\sigma}_{\pi} u_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right), \sup _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}+\frac{\tilde{\sigma}_{\pi} u_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right)\right]
$$

Uniform Confidence Band

- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies

$$
\text { standard deviation w.r.t. } \hat{\phi} \quad 1-\beta / 2 \text { quantile }
$$

- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \hat{\phi}_{\pi}+\frac{\hat{\sigma}_{\pi} t_{1}-\beta / 2}{n^{1 / 2}} \geq \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi^{\prime}} t_{1-\beta / 2}}{n^{1 / 2}}\right]\right\}$.
- Second stage: construct a uniform confidence interval for the remaining policies

$$
\left[\inf _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}-\frac{\tilde{\sigma}_{\pi} u_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right), \sup _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}+\frac{\vdots \tilde{\tilde{\sigma}}_{0} u_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right)\right]
$$

Uniform Confidence Band

- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies

$$
\text { standard deviation w.r.t. } \hat{\phi} \quad 1-\beta / 2 \text { quantile }
$$

- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \hat{\phi}_{\pi}+\frac{\hat{\sigma}_{\pi} t_{1}-\beta / 2}{n^{1 / 2}} \geq \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi^{\prime}} t_{1-\beta / 2}}{n^{1 / 2}}\right]\right\}$.
- Second stage: construct a uniform confidence interval for the remaining policies

$$
\begin{aligned}
& \text { standard deviation w.r.t. } \hat{\psi}
\end{aligned}
$$

A Joint Approach

A Joint Approach

- Replace the quantiles $\left(t_{1-\beta / 2}, u_{1-(\alpha-\beta) / 2}\right)$ by $\left(t_{1-\alpha / 2}, u_{1-\alpha / 2}\right)$ by considering the joint distribution of (Φ, Ψ)

A Joint Approach

- Replace the quantiles $\left(t_{1-\beta / 2}, u_{1-(\alpha-\beta) / 2}\right)$ by $\left(t_{1-\alpha / 2}, u_{1-\alpha / 2}\right)$ by considering the joint distribution of (Φ, Ψ)

Theorem (confidence interval for Ψ_{π}). The following confidence interval contains $\left\{\Psi_{\pi}: \pi \in \Pi^{*}\right\}$ with probability at least $1-\alpha$ asymptotically:

$$
\left[\inf _{\pi \in \hat{\Pi}_{1-\alpha}}\left[\hat{\psi}_{\pi}-\frac{\tilde{\sigma}_{\pi}(P) u_{1-\alpha / 2}}{n^{1 / 2}}\right], \sup _{\pi \in \hat{\Pi}_{1-\alpha}}\left[\hat{\psi}_{\pi}+\frac{\tilde{\sigma}_{\pi}(P) u_{1-\alpha / 2}}{n^{1 / 2}}\right]\right]
$$

Why Joint Approach is Better

- We first demonstrate why the joint approach gives tighter confidence interval than the two-stage approach

Why Joint Approach is Better

- We first demonstrate why the joint approach gives tighter confidence interval than the two-stage approach

Why Joint Approach is Better

- We first demonstrate why the joint approach gives tighter confidence interval than the two-stage approach

[^0]
Simulation Setting

- Consider 1D case, threshold policy class $\Pi=\{\mathbf{1}\{x \geq a\}: a \in \mathbb{R}\}$
- Consider three scenarios:

π_{*} is non-unique
π_{*} is unique, Y^{*} and Y^{\dagger} correlated

π_{*} is unique, Y^{*} and Y^{\dagger} not correlated

Detailed Setting

- For the uniform confidence band method and the joint method, estimate the supremum via multiplier bootstrap
- In each setting, we simulate X with a sample size of 8000 for 1000 iterations
- Use bootstrap sample size of 1000 , a confidence level of $\alpha=0.05$

Simulation Results

Table: coverages for various scenarios

	two-stage	joint	one-step
non-unique	1.0	1.0	0.0
unique non-correlated	0.98	0.98	0.812
unique correlated	0.978	0.981	0.949

Figure: confidence interval width for various scenarios

Summary

- Propose a margin condition and construct an efficient estimator for $\left\{\Psi_{\pi}: \pi \in \Pi^{*}\right\}$
- Present a two-stage and a joint approach to make inference on $\left\{\Psi_{\pi}: \pi \in \Pi^{*}\right\}$ without the margin condition
- Run numerical experiments to show the desirable properties of the methods

Outline

- Project 1: Instance-optimal PAC Contextual bandits
- Project 2: Estimation of the mean of subsidiary outcome
- Future Work

Plans for Third Project

- Policy learning when the action space is large
- Application to pricing problem
- At time t, a customer arrives, the learner plays price p_{t} and receive revenue $R\left(p_{t}\right)$
- Assume $p_{\star}:=\arg \max R(p)$, one objective is to identify p_{\star}

$$
p \in \mathbb{R}
$$

- Can still use the algorithm before, but will not be computationally efficient

Related Work and Objectives

Related Work and Objectives

- Existing methods:
- discretizing the action space [Krishnamurthy et al. 2020]: minimax results
- Efficient computation: posterior sampling method

Related Work and Objectives

- Existing methods:
- discretizing the action space [Krishnamurthy et al. 2020]: minimax results
- Efficient computation: posterior sampling method

Question:

- What is an instance-dependent PAC lower bounds when action space is large?
- Is there a computationally efficient algorithm in this setting?

Thanks!

Inefficiency of low-regret algorithms

Inefficiency of low-regret algorithms

Theorem [Li et al. 2022] There exists an instance μ such that for any α -minimax regret algorithm that is $(0, \delta)-\mathrm{PAC}$, the stopping time satisfies

$$
\mathbb{E}_{\mu}[\tau] \geq|\Pi|^{2} \Delta^{-2} \log ^{2}(1 / 2.4 \delta) / 4 \alpha
$$

Posterior Sampling

- Assume $R\left(p_{t}\right)$ has a linear form $R\left(p_{t}\right)=\left\langle\phi_{p_{t}}, \theta^{*}\right\rangle$, a framework is as follows:

```
Input: Prior }\mp@subsup{\Pi}{0}{}\mathrm{ for }\mp@subsup{0}{}{*
for }t=1,2,
    1. sample \tilde{0}~\mp@subsup{\Pi}{t-1}{}
    2. compute }\mp@subsup{p}{t}{}=\operatorname{arg}\operatorname{max}R(p,\tilde{0}
    3. Update posterior \Pi}\mp@subsup{}{t}{p
```

- Can we show that posterior sampling works in this setting? If not, what is the computational limit of posterior sampling methods, i.e. a lower bound?

Agnostic Setting Reduces to Linear

- What if we do not assume linear structure of reward function?

We can reduce it to the previous setting by constructing ϕ !

- Let $\theta^{*} \in \mathbb{R}^{|\mathrm{C}| \times|\mathrm{A}|}$ where $\left[\theta^{*}\right]_{c, a}=r(c, a)$
a

Agnostic Setting Reduces to Linear

$$
\begin{aligned}
& r(c, a)=\left\langle\boldsymbol{\operatorname { v e c }}\left(e_{c} e_{a}^{\top}\right), \theta^{*}\right\rangle \\
& \phi(c, a) \\
& \left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p))^{-1}}^{2}=\sum_{c} \nu_{c} \sum_{a} \frac{1}{p_{c, a}}\left(\mathbf{1}\{\pi(c)=a\}-\mathbf{1}\left\{\pi_{*}(c)=a\right\}\right)^{2}=\mathbb{E}_{c \sim \nu}\left[\left(\frac{1}{p_{c, \pi \pi}(c)}+\frac{1}{p_{c, \pi_{*}(c)}}\right) \mathbf{1}\left\{\pi_{*}(c) \neq \pi(c)\right\}\right] .
\end{aligned}
$$

Agnostic Setting Reduces to Linear

$$
\begin{aligned}
& r(c, a)=\left\langle\boldsymbol{\operatorname { v e c }}\left(e_{c} e_{a}^{\top}\right), \theta^{*}\right\rangle \\
& \phi(c, a) \\
& \left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p))^{-1}}^{2}=\sum_{c} \nu_{c} \sum_{a} \frac{1}{p_{c, a}}\left(\mathbf{1}\{\pi(c)=a\}-\mathbf{1}\left\{\pi_{*}(c)=a\right\}\right)^{2}=\mathbb{E}_{c \sim \nu}\left[\left(\frac{1}{p_{c, \pi \tau}(c)}+\frac{1}{p_{c, \pi_{s}(c)}}\right) \mathbf{1}\left\{\pi_{*}(c) \neq \pi(c)\right\}\right] .
\end{aligned}
$$

$$
\rho_{\Pi, c}:=\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi \backslash \pi_{s}} \frac{\mathbb{E}_{c \sim \nu}\left[\left(\frac{1}{p_{c, \pi(c)}}+\frac{1}{p_{c, \pi, \pi}(c)}\right)\right.}{} \frac{\left.\mathbf{1}\left\{\begin{array}{l}
\text { Variance } \\
\left.\left(\mathbb{E}_{c \sim \nu}(c) \neq \pi(c)\right\}\right]
\end{array} r\left(c, \pi_{*}(c)\right)-r(c, \pi(c))\right] \vee \epsilon\right)^{2}}{\text { Gap }} .
$$

Uniform Confidence Band

Uniform Confidence Band

- Suppose $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation

Uniform Confidence Band

- Suppose $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\{\mathbb{G} f: f \in \mathscr{F}\}$ be some Gaussian process characterizing the behavior of $\hat{\phi}_{\pi}$

Uniform Confidence Band

- Suppose $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\{\mathbb{G} f: f \in \mathscr{F}\}$ be some Gaussian process characterizing the behavior of $\hat{\phi}_{\pi}$
- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies

Uniform Confidence Band

- Suppose $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\{\mathbb{G} f: f \in \mathscr{F}\}$ be some Gaussian process characterizing the behavior of $\hat{\phi}_{\pi}$
- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right] \leq \hat{\phi}_{\pi}+\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right\}$.

Uniform Confidence Band

- Suppose $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\{\mathbb{G} f: f \in \mathscr{F}\}$ be some Gaussian process characterizing the behavior of $\hat{\phi}_{\pi}$
- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \sup _{\pi \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right] \leq \hat{\phi}_{\pi}+\frac{\sigma_{\pi, 1}^{T_{1}-\beta / \beta_{2}} \hat{i}^{1-\beta}}{n^{1 / 2}}\right\}$.

Uniform Confidence Band

- Suppose $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\{\mathbb{G} f: f \in \mathscr{F}\}$ be some Gaussian process characterizing the behavior of $\hat{\phi}_{\pi}$
- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies

$$
\left[\inf _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}-\frac{\tilde{\sigma}_{\pi} z_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right), \sup _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}+\frac{\tilde{\sigma}_{\pi} z_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right)\right]
$$

Uniform Confidence Band

- Suppose $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\{\mathbb{G} f: f \in \mathscr{F}\}$ be some Gaussian process characterizing the behavior of $\hat{\phi}_{\pi}$
- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies
$1-\beta / 2$ quantile of $\sup _{f \in \mathscr{F}} \mathbb{G} f$
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \sup _{\pi \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right] \leq \hat{\phi}_{\pi}+\frac{\sigma_{\pi, t i n}^{t_{1}-\beta / 2}}{n^{1 / 2}}\right\}$.

$$
\left[\inf _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}-\frac{\tilde{\sigma}_{\pi} z_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right), \sup _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}+\frac{\tilde{\sigma}_{\pi} \frac{\cdots \cdots \cdots \cdots \cdot(\alpha-\beta)!2}{\vdots}}{n^{1 / 2}}\right)\right] \quad \begin{gathered}
1-(\alpha-\beta) / 2 \text { quantile of the } \\
\text { normal distribution }
\end{gathered}
$$

Uniform Confidence Band

- Suppose $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\{\mathbb{G} f: f \in \mathscr{F}\}$ be some Gaussian process characterizing the behavior of $\hat{\phi}_{\pi}$
- We spend $\beta<\alpha$ of the confidence level in the first-stage to eliminate policies

$$
1-\beta / 2 \text { quantile of } \sup _{f \in \mathscr{F}}^{\mathbb{G} f}
$$

- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \sup _{\pi \in \Pi}\left[\hat{\phi}_{n^{\prime}}-\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right] \leq \hat{\phi}_{\pi}+\frac{\sigma_{\pi, t} t_{1-\beta / 2}}{n^{1 / 2}}\right\}$.
- Second stage: construct a uniform confidence interval for the remaining policies

$$
\left[\inf _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}-\frac{\tilde{\sigma}_{\pi} z_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right), \sup _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}+\frac{\tilde{\sigma}_{\pi} \frac{\cdots \cdots \cdots \cdots}{\vdots} n_{1-(\alpha-\beta) / 2}^{\prime}}{n^{1 / 2}}\right)\right]
$$

$1-(\alpha-\beta) / 2$ quantile of the normal distribution

A Joint Approach

A Joint Approach

- Replace the quantiles $\left(t_{1-\beta / 2}, u_{1-(\alpha-\beta) / 2}\right)$ by $\left(t_{1-\alpha / 2}, u_{1-\alpha / 2}\right)$

A Joint Approach

- Replace the quantiles $\left(t_{1-\beta / 2}, u_{1-(\alpha-\beta) / 2}\right)$ by $\left(t_{1-\alpha / 2}, u_{1-\alpha / 2}\right)$

A Joint Approach

- Replace the quantiles $\left(t_{1-\beta / 2}, u_{1-(\alpha-\beta) / 2}\right)$ by $\left(t_{1-\alpha / 2}, u_{1-\alpha / 2}\right)$
remove the union bound argument!

A Joint Approach

- Replace the quantiles $\left(t_{1-\beta / 2}, u_{1-(\alpha-\beta) / 2}\right)$ by $\left(t_{1-\alpha / 2}, u_{1-\alpha / 2}\right)$
remove the union bound argument!
- More specifically, choose $\left(t_{1-\alpha / 2}, u_{1-\alpha / 2}\right)$ such that

$$
\inf _{\pi \in \Pi} \operatorname{Pr}\left\{\sup _{f \in \mathscr{F}}|\mathbb{G} f| \leq t_{1-\alpha / 2}, \mathbb{G} \tilde{f}_{\pi} \leq u_{1-\alpha / 2}\right\} \geq 1-\alpha / 2 .
$$

A Joint Approach

- Replace the quantiles $\left(t_{1-\beta / 2}, u_{1-(\alpha-\beta) / 2}\right)$ by $\left(t_{1-\alpha / 2}, u_{1-\alpha / 2}\right)$
- More specifically, choose $\left(t_{1-\alpha / 2}, u_{1-\alpha / 2}\right)$ such that

$$
\inf _{\pi \in \Pi} \operatorname{Pr}\left\{\sup _{f \in \mathscr{F}}|\mathbb{G} f| \leq t_{1-\alpha / 2}, \mathbb{G} \tilde{f}_{\pi} \leq u_{1-\alpha / 2}\right\} \geq 1-\alpha / 2 .
$$

Theorem (confidence interval for Ψ_{π}). The following confidence interval contains Ψ_{π} with probability at least $1-\alpha$ asymptotically:

$$
\left[\inf _{\pi \in \hat{\Pi}_{1-\alpha}}\left[\hat{\psi}_{\pi}-\frac{\tilde{\sigma}_{\pi}(P) u_{1-\alpha / 2}}{n^{1 / 2}}\right], \sup _{\pi \in \hat{\Pi}_{1-\alpha}}\left[\hat{\psi}_{\pi}+\frac{\tilde{\sigma}_{\pi}(P) u_{1-\alpha / 2}}{n^{1 / 2}}\right]\right] .
$$

3D Simulation

Inefficiency of Anytime CI and Robust Mean Estimator

- Anytime confidence interval scales like $\sqrt{t \log (1 / \delta)}$, which is vacuous as $t \rightarrow \infty$
- Let $\Psi(P):=\Psi_{\pi_{p}^{*}}(P)$. Without the margin condition $2, \Psi$ will not be pathwise differentiable around some P_{0}, i.e. the limit $\lim _{\epsilon \rightarrow 0} \frac{\Psi\left(P_{\epsilon}\right)-\Psi\left(P_{0}\right)}{\epsilon}$ does not converge.

$$
\epsilon \rightarrow 0 \quad \epsilon
$$

- Also, $\Psi_{\pi_{n}^{*}}\left(P_{0}\right)-\Psi_{\pi_{0}^{*}}\left(P_{0}\right)$ is likely not $o_{P_{0}}\left(n^{-1 / 2}\right)$ without the margin condition, so the Cl constructed by any robust mean estimator will suffer this as well, which means that it is necessarily worse than the uniform confidence band approach, which has the $n^{-1 / 2}$ scaling in the confidence interval

Hard Instance

- Fix $m \in \mathbb{N}, \Delta \in(0,1]$ and let $C=[m]$ with uniform distribution, $\mathrm{A}=\{0,1\}$.
- For $i=1, \ldots, m$, let $\pi_{i}(j)=\mathbf{1}\{i=j\}$ and define $r(i, j)=\Delta \mathbf{1}\left\{j=\pi_{1}(i)\right\}$.
- Then $V\left(\pi_{1}\right)=\Delta$ and $V\left(\pi_{i}\right)=\Delta(1-2 / m)$ for all $i \in \mathrm{C} \backslash\{1\}$.
- In this case, $m=|\Pi|$ and $\rho_{\Pi, 0}=\frac{4 / m}{(2 \Delta / m)^{2}}=m \Delta^{-2}$.

Towards Lower Bound: Estimators

- Linear contextual bandit setting:
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting:
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting:
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\begin{aligned}
& \mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*} \\
& \quad \Rightarrow \hat{\theta}=\frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi\left(c_{t}, a_{t}\right) r_{t}
\end{aligned}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting:
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\begin{aligned}
& \mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*} \\
& \quad \Rightarrow \hat{\theta}=\frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi\left(c_{t}, a_{t}\right) r_{t}
\end{aligned}
$$

IPW estimate!

Estimate the Gap

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$
- Let $\phi_{\pi}:=\mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$, an estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

$$
\operatorname{Var}(\hat{\Delta}(\pi))=\left(\phi_{\pi_{s}}-\phi_{\pi}\right)^{\top} \operatorname{Var}(\hat{\theta})\left(\phi_{\pi_{s}}-\phi_{\pi}\right)=\frac{\left\|\phi_{\pi_{s}}-\phi_{\pi}\right\|_{A(p))^{-1}}^{2}}{n}
$$

- Assuming Gaussian noise, with probability at least $1-\delta$,

$$
|\hat{\Delta}(\pi)-\Delta(\pi)| \leq \sqrt{\frac{2\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n}}
$$

Towards Lower Bound

- Linear contextual bandit setting:
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Let $\phi_{\pi}:=\mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$, so for any $\pi \in \Pi, V(\pi)=\left\langle\phi_{\pi}, \theta^{*}\right\rangle$

Lower Bound in Linear Contextual Bandits

Want confidence set to shrink to Θ_{1} as quickly as possible!

A Lower Bound

- Let S_{n} denote the confidence set
- $\mathrm{S}_{n} \subset \Theta_{1} \Leftrightarrow \forall \pi \in \Pi, \forall \theta \in \mathrm{~S}_{n}, V\left(\pi_{*}\right)-V(\pi) \geq 0$
$\Leftrightarrow \forall \pi \in \Pi, \forall \theta \in \mathrm{S}_{n},\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \theta \geq 0$
$\Leftrightarrow \forall \theta \in \mathrm{S}_{n},\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \theta_{*} \geq\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top}\left(\theta_{*}-\theta\right)$

A Lower Bound

- Let S_{n} denote the confidence set
- $\mathrm{S}_{n} \subset \Theta_{1} \Leftrightarrow \forall \pi \in \Pi, \forall \theta \in \mathrm{~S}_{n}, V\left(\pi_{*}\right)-V(\pi) \geq 0$
$\Leftrightarrow \forall \pi \in \Pi, \forall \theta \in \mathrm{S}_{n},\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \theta \geq 0$
$\Leftrightarrow \forall \theta \in S_{n},\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \theta_{*} \geq\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top}\left(\theta_{*}-\theta\right)$
gap

A Lower Bound

- Let S_{n} denote the confidence set
- $\mathrm{S}_{n} \subset \Theta_{1} \Leftrightarrow \forall \pi \in \Pi, \forall \theta \in \mathrm{~S}_{n}, V\left(\pi_{*}\right)-V(\pi) \geq 0$
$\Leftrightarrow \forall \pi \in \Pi, \forall \theta \in \mathrm{S}_{n},\left(\phi_{\pi *}-\phi_{\pi}\right)^{\top} \theta \geq 0$
$\Leftrightarrow \forall \theta \in \mathrm{S}_{n}\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \theta_{*} \geq\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top}\left(\theta_{*}-\theta\right)$
gap estimation error of the gap

A Lower Bound

- Let S_{n} denote the confidence set
- $\mathrm{S}_{n} \subset \Theta_{1} \Leftrightarrow \forall \pi \in \Pi, \forall \theta \in \mathrm{~S}_{n}, V\left(\pi_{*}\right)-V(\pi) \geq 0$
$\Leftrightarrow \forall \pi \in \Pi, \forall \theta \in \mathrm{S}_{n},\left(\phi_{\pi *}-\phi_{\pi}\right)^{\top} \theta \geq 0$
$\Leftrightarrow \forall \theta \in \mathrm{S}_{n}\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \theta_{*} \geq\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top}\left(\theta_{*}-\theta\right)$
gap estimation error of the gap

Need estimates for θ^{*} and the gap!

Estimators for θ^{*}

- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*}
$$

Estimators for θ^{*}

- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*}
$$

Estimators for θ^{*}

- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\begin{aligned}
& \mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*} \\
& \left.\quad \Rightarrow \hat{\theta}=\frac{1}{n} A(p)\right)^{-1} \sum_{t=1}^{n} \phi\left(c_{t}, a_{t}\right) r_{t}
\end{aligned}
$$

Estimators for θ^{*}

- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\begin{gathered}
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*} \\
\Rightarrow \hat{\theta}=\frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi\left(c_{t}, a_{t}\right) r_{t} \\
\text { IPW estimate! }
\end{gathered}
$$

Estimate the Gap

Estimate the Gap

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$

Estimate the Gap

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$
- An estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

Estimate the Gap

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$
- An estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

$$
\operatorname{Var}(\hat{\Delta}(\pi))=\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \operatorname{Var}(\hat{\theta})\left(\phi_{\pi_{*}}-\phi_{\pi}\right)=\frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{n}
$$

Estimate the Gap

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$
- An estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

$$
\operatorname{Var}(\hat{\Delta}(\pi))=\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \operatorname{Var}(\hat{\theta})\left(\phi_{\pi_{*}}-\phi_{\pi}\right)=\frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{n}
$$

- Assuming Gaussian noise, with probability at least $1-\delta$,

$$
|\hat{\Delta}(\pi)-\Delta(\pi)| \leq \sqrt{\frac{2\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n}}
$$

A Lower Bound

- Plugging in the guarantee: $\forall \theta \in \mathrm{S}_{n},\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top}\left(\theta_{*}-\theta\right) \leq\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \theta_{*}$

$$
\Leftrightarrow \sqrt{\frac{2\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n}} \leq\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \theta_{*}
$$

- Choose action distribution p such that:

$$
\max _{\pi \in \Pi \backslash \pi_{*}} \frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{\Delta(\pi)^{2}} \leq \frac{n}{2 \log (1 / \delta)}
$$

A Lower Bound

- Plugging in the guarantee: $\forall \theta \in \mathrm{S}_{n},\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top}\left(\theta_{*}-\theta\right) \leq\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \theta_{*}$

$$
\Leftrightarrow \sqrt{\frac{2\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2} \log (1 / \delta)}{n}} \leq\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \theta_{*}
$$

- Choose action distribution p such that:

$$
\max _{\pi \in \Pi \backslash \pi_{*}} \frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{\Delta(\pi)^{2}} \leq \frac{n}{2 \log (1 / \delta)}
$$

Theorem [Li et al. 2022] Let τ be the stopping time of the algorithm. Any $(0, \delta)$ PAC algorithm satisfies $\tau \geq \rho_{\Pi, 0} \log (1 / 2.4 \delta)$ with high probability where

$$
\rho_{\Pi, 0}=\min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \max _{\pi \in \Pi \backslash \pi_{*}} \frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{\Delta(\pi)^{2}} \text {. }
$$

Uniform Confidence Band

Uniform Confidence Band

- Suppose D_{π} is a gradient of Φ_{π} at P, \tilde{D}_{π} is a gradient of Ψ_{π} at P

Uniform Confidence Band

- Suppose D_{π} is a gradient of Φ_{π} at P, \tilde{D}_{π} is a gradient of Ψ_{π} at P
- $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation

Uniform Confidence Band

- Suppose D_{π} is a gradient of Φ_{π} at P, \tilde{D}_{π} is a gradient of Ψ_{π} at P
- $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\sqrt{n} \frac{\hat{\phi}_{\pi}-\Phi_{\pi}}{\sigma_{\pi}} \rightarrow \mathbb{G} f$ and $\sqrt{n} \frac{\hat{\psi}_{\pi}-\Psi_{\pi}}{\tilde{\sigma}_{\pi}} \rightarrow \mathbb{G} \tilde{f}$

Uniform Confidence Band

- Suppose D_{π} is a gradient of Φ_{π} at P, \tilde{D}_{π} is a gradient of Ψ_{π} at P
- $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\sqrt{n} \frac{\hat{\phi}_{\pi}-\Phi_{\pi}}{\sigma_{\pi}} \rightarrow \mathbb{G} f$ and $\sqrt{n} \frac{\hat{\psi}_{\pi}-\Psi_{\pi}}{\tilde{\sigma}_{\pi}} \rightarrow \mathbb{G} \tilde{f}$

Uniform Confidence Band

- Suppose D_{π} is a gradient of Φ_{π} at P, \tilde{D}_{π} is a gradient of Ψ_{π} at P
- $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\sqrt{n} \frac{\hat{\phi}_{\pi}-\Phi_{\pi}}{\sigma_{\pi}} \rightarrow \mathbb{G} f$ and $\sqrt{n} \frac{\hat{\psi}_{\pi}-\Psi_{\pi}}{\tilde{\sigma}_{\pi}} \rightarrow \mathbb{G} \tilde{f}$
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \sup _{\pi \in \Pi}\left[\hat{\phi}_{n^{\prime}}-\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right] \leq \hat{\phi}_{\pi}+\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right\}$.

Uniform Confidence Band

- Suppose D_{π} is a gradient of Φ_{π} at P, \tilde{D}_{π} is a gradient of Ψ_{π} at P
- $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\sqrt{n} \frac{\hat{\phi}_{\pi}-\Phi_{\pi}}{\sigma_{\pi}} \rightarrow \mathbb{G} f$ and $\sqrt{n} \frac{\hat{\psi}_{\pi}-\Psi_{\pi}}{\tilde{\sigma}_{\pi}} \rightarrow \mathbb{G} \tilde{f}$
$1-\beta / 2$ quantile of $\sup \mathbb{G} f$
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \sup _{\pi \in \Pi}^{\sigma_{\pi}}\left[\hat{\phi}_{n^{\prime}}-\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right] \leq \hat{\phi}_{\pi}+\frac{\sigma_{\sigma t_{1} t_{1}-\beta / 12}^{2}}{n^{1 / 2}}\right\}$.

Uniform Confidence Band

- Suppose D_{π} is a gradient of Φ_{π} at P, \tilde{D}_{π} is a gradient of Ψ_{π} at P
- $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\sqrt{n} \frac{\hat{\phi}_{\pi}-\Phi_{\pi}}{\sigma_{\pi}} \rightarrow \mathbb{G} f$ and $\sqrt{n} \frac{\hat{\psi}_{\pi}-\Psi_{\pi}}{\tilde{\sigma}_{\pi}} \rightarrow \mathbb{G} \tilde{f}$
$1-\beta / 2$ quantile of $\sup \mathbb{G} f$
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right] \leq \hat{\phi}_{\pi}+\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right\}$.
- Second stage: construct a uniform confidence interval for the remaining policies

Uniform Confidence Band

- Suppose D_{π} is a gradient of Φ_{π} at P, \tilde{D}_{π} is a gradient of Ψ_{π} at P
- $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\sqrt{n} \frac{\hat{\phi}_{\pi}-\Phi_{\pi}}{\sigma_{\pi}} \rightarrow \mathbb{G} f$ and $\sqrt{n} \frac{\hat{\psi}_{\pi}-\Psi_{\pi}}{\tilde{\sigma}_{\pi}} \rightarrow \mathbb{G} \tilde{f}$
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi} t_{1}-\beta / 2}{n^{1 / 2}}\right] \leq \hat{\phi}_{\pi}+\frac{\sigma_{\pi} t_{1}-\beta / 2}{n^{1 / 2}}\right\}$.
- Second stage: construct a uniform confidence interval for the remaining policies

$$
\left[\inf _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}-\frac{\tilde{\sigma}_{\pi} z_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right), \sup _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}+\frac{\tilde{\sigma}_{\pi} z_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right)\right]
$$

Uniform Confidence Band

- Suppose D_{π} is a gradient of Φ_{π} at P, \tilde{D}_{π} is a gradient of Ψ_{π} at P
- $\sigma_{\pi}:=\left(P D_{\pi}^{2}\right)^{1 / 2}, \tilde{\sigma}_{\pi}:=\left(P \tilde{D}_{\pi}^{2}\right)^{1 / 2}$, standard deviation
- Let $\sqrt{n} \frac{\hat{\phi}_{\pi}-\Phi_{\pi}}{\sigma_{\pi}} \rightarrow \mathbb{G} f$ and $\sqrt{n} \frac{\hat{\psi}_{\pi}-\Psi_{\pi}}{\tilde{\sigma}_{\pi}} \rightarrow \mathbb{G} \tilde{f}$
- First stage: $\hat{\Pi}_{1-\beta}:=\left\{\pi \in \Pi: \sup _{\pi^{\prime} \in \Pi}\left[\hat{\phi}_{\pi^{\prime}}-\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right] \leq \hat{\phi}_{\pi}+\frac{\sigma_{\pi} t_{1-\beta / 2}}{n^{1 / 2}}\right\}$.
- Second stage: construct a uniform confidence interval for the remaining policies

$$
\left[\inf _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}-\frac{\tilde{\sigma}_{\pi} z_{1-(\alpha-\beta) / 2}}{n^{1 / 2}}\right), \sup _{\pi \in \hat{\Pi}_{1-\beta}}\left(\hat{\psi}_{\pi}+\frac{\tilde{\sigma}_{\pi} z_{1} \cdots \cdots \cdots \cdots}{n^{1 / 2}}\right]\right.
$$

$1-(\alpha-\beta) / 2$ quantile of the normal distribution

A Lower Bound

A Lower Bound

Theorem [Li et al. 2022] Let τ be the stopping time of the algorithm. Any $(0, \delta)-$ PAC algorithm satisfies $\tau \geq \rho_{\Pi, 0} \log (1 / 2.4 \delta)$ with high probability where

$$
\rho_{\Pi, 0}=\min _{p_{c} \in \triangle_{A}, \forall c \in \mathrm{C}} \max _{\pi \in \Pi \backslash \pi_{*}} \frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{\Delta(\pi)^{2}} \text {. }
$$

A Lower Bound in Linear Bandits

- Set of features $x \in \mathscr{X}$, some unknown parameter $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- At each time $t=1,2, \cdots$:
- Choose action $a_{t} \in \mathrm{~A}$
- Receive reward $r_{t}=\left\langle x_{a_{t}}, \theta^{*}\right\rangle+\epsilon$
- Goal: identify $a_{*}=\arg \max _{a \in \mathrm{~A}}\left\langle x_{a}, \theta_{*}\right\rangle$

A Lower Bound in Linear Bandits

- Identify $a_{*}=\arg \max _{a \in \mathscr{A}}\left\langle x_{a}, \theta_{*}\right\rangle$

A Lower Bound in Linear Bandits

- Identify $a_{*}=\arg \max _{a \in \mathscr{d}}\left\langle x_{a}, \theta_{*}\right\rangle$

A Lower Bound in Linear Bandits

- Identify $a_{*}=\arg \max _{a \in \mathscr{d}}\left\langle x_{a}, \theta_{*}\right\rangle$

A Lower Bound in Linear Bandits

- Identify $a_{*}=\arg \max _{a \in \mathscr{A}}\left\langle x_{a}, \theta_{*}\right\rangle$

A Lower Bound in Linear Bandits

A Lower Bound in Linear Bandits

- Given dataset $\left\{\left(a_{t}, r_{t}\right)\right\}_{t=1}^{n}$, consider the least-squares estimate

A Lower Bound in Linear Bandits

- Given dataset $\left\{\left(a_{t}, r_{t}\right)\right\}_{t=1}^{n}$, consider the least-squares estimate

$$
\hat{\theta}_{n}=\left(\sum_{t=1}^{n} x_{a_{t}} x_{a_{t}}^{\top}\right)^{-1}\left(\sum_{t=1}^{n} x_{a_{t}} r_{t}\right)
$$

A Lower Bound in Linear Bandits

- Given dataset $\left\{\left(a_{t}, r_{t}\right)\right\}_{t=1}^{n}$, consider the least-squares estimate

$$
\hat{\theta}_{n}=\left(\sum_{t=1}^{n} x_{a_{t}} x_{a_{t}}^{\top}\right)^{-1}\left(\sum_{t=1}^{n} x_{a_{t}} r_{t}\right)
$$

A Lower Bound in Linear Bandits

- Given dataset $\left\{\left(a_{t}, r_{t}\right)\right\}_{t=1}^{n}$, consider the least-squares estimate

$$
\hat{\theta}_{n}=\left(\sum_{t=1}^{n} x_{a_{t}} x_{a_{t}}^{\top}\right)^{-1}\left(\sum_{t=1}^{n} x_{a_{t}} r_{t}\right)
$$

- Can get $\left|x^{\top}\left(\theta_{*}-\hat{\theta}_{n}\right)\right| \leq c\|x\|_{A_{n}^{-1}} \sqrt{\log (|\mathrm{~A}| / \delta)}$ with probability at least $1-\delta$

A Lower Bound in Linear Bandits

- $\left|x^{\top}\left(\theta_{*}-\hat{\theta}_{n}\right)\right| \leq c\|x\|_{A_{n}^{-1}} \sqrt{\log (|\mathrm{~A}| / \delta)}$

A Lower Bound in Linear Bandits

- $\left|x^{\top}\left(\theta_{*}-\hat{\theta}_{n}\right)\right| \leq c\|x\|_{A_{n}^{-1}} \sqrt{\log (|\mathrm{~A}| / \delta)}$

This direction provides a tradeoff between the deviation from the truth and the uncertainty, i.e. the variance

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\begin{aligned}
& \mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*} \\
& \quad \Rightarrow \hat{\theta}=\frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi\left(c_{t}, a_{t}\right) r_{t}
\end{aligned}
$$

Towards Lower Bound: Estimators

- Linear contextual bandit setting (agnostic setting could be reduced to linear setting):
- feature map: $\phi: \mathrm{C} \times \mathrm{A} \rightarrow \mathbb{R}^{d}$ such that $r(c, a)=\left\langle\phi(c, a), \theta^{*}\right\rangle$ for $\theta^{*} \in \Theta \subset \mathbb{R}^{d}$
- Given dataset $\mathrm{D}=\left\{\left(c_{t}, a_{t}, r_{t}\right)\right\}_{t=1}^{n}$ where $a_{t} \sim p_{c_{t}} \in \triangle_{\mathrm{A}}$,

$$
\begin{aligned}
& \mathbb{E}\left[\phi\left(c_{t}, a_{t}\right) r_{t}\right]=\mathbb{E}_{c, a}\left[\phi(c, a) \phi(c, a)^{\top} \theta^{*}\right]=\sum_{c} \nu_{c} \sum_{a} p_{c, a} \phi(c, a) \phi(c, a)^{\top} \theta^{*} \\
& \quad \Rightarrow \hat{\theta}=\frac{1}{n} A(p)^{-1} \sum_{t=1}^{n} \phi\left(c_{t}, a_{t}\right) r_{t}
\end{aligned}
$$

IPW estimate!

A Lower Bound for Contextual Bandits

A Lower Bound for Contextual Bandits

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$

A Lower Bound for Contextual Bandits

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$
- Let $\phi_{\pi}:=\mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$, an estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

$$
\operatorname{Var}(\hat{\Delta}(\pi))=\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \operatorname{Var}(\hat{\theta})\left(\phi_{\pi_{*}}-\phi_{\pi}\right)=\frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{n}
$$

A Lower Bound for Contextual Bandits

- For each $\pi \in \Pi$, define the gap $\Delta(\pi):=V\left(\pi_{*}\right)-V(\pi)$
- Let $\phi_{\pi}:=\mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$, an estimate $\hat{\Delta}(\pi)=\hat{V}\left(\pi_{*}\right)-\hat{V}(\pi)=\left\langle\phi_{\pi_{*}}-\phi_{\pi}, \hat{\theta}\right\rangle$

$$
\operatorname{Var}(\hat{\Delta}(\pi))=\left(\phi_{\pi_{*}}-\phi_{\pi}\right)^{\top} \operatorname{Var}(\hat{\theta})\left(\phi_{\pi_{*}}-\phi_{\pi}\right)=\frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{n}
$$

Theorem [Li et al. 2022] Let τ be the stopping time of the algorithm. Any $(0, \delta)$ PAC algorithm satisfies $\tau \geq \rho_{\Pi, 0} \log (1 / 2.4 \delta)$ with high probability where

$$
\rho_{\Pi, 0}=\min _{p_{c} \in \triangle_{A}, \forall c \in C} \max _{\pi \in \Pi \backslash \pi_{*}} \frac{\left\|\phi_{\pi_{*}}-\phi_{\pi}\right\|_{A(p)^{-1}}^{2}}{\Delta(\pi)^{2}} \text { gap }
$$

[^0]: joint approach selects (t, u) which provides the tightest confidence interval

