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Motivation

recovered from disease

π
policy

Question: how do we characterize the amount of 
side effects when the treatment allocation is 

optimized for disease remission?

side effect



Outline
• Project 1: Instance-optimal PAC Contextual bandits

• Project 2: Estimation of the mean of subsidiary outcome

• Future Work
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Contextual Bandit Setting
• At each time :

• Context  arrives,  

• Choose action 

• Receive reward ,  

t = 1,2,⋯
ct ∈ 𝖢 ct ∼ ν ∈ Δ𝖢

at ∈ 𝖠
rt 𝔼[rt |ct, at] = r(ct, at) ∈ ℝ
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Return  satisfying,  with probability greater 
than  in a minimum number of samples.

(ϵ, δ) − PAC Guarantee

̂π V( ̂π) ≥ V(π*) − ϵ
1 − δ
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Regret Minimization vs. Policy Identification
• Regret heavily studied: 
 

• EXP4 achieves a minimax-optimal regret bound of , 
also achieved by ILOVETOCONBANDITS [Agarwal et al. 2014] and 
computationally efficient

RT = O( |𝖠 |T log( |Π | ))

• Modification gives - PAC algorithm w/ sample complexity 
, also see [Zanette et al. 2021]  
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Theorem [Li et al. 2022] There exists an instance  such that for any minimax 
regret algorithm that is -PAC, the stopping time satisfies

, which is the lower bound squared.  

μ
(0,δ)

𝔼μ[τ] ≥ |Π |2 log2(1/(2.4δ))/4
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Challenges
• What is the statistical limits of learning, i.e. the instance-dependent lower bound?

• Can we design sampling procedure to achieve this?

• Computational efficiency - context space  could be infinite and  could be large!𝖢 Π

9

Question: what is possible?

…
Nov - Dec



Our Contribution

• Show the first instance-dependent lower bound for PAC contextual bandit

• Present a simple algorithm that achieves this lower bound

• Design a computational efficient algorithm that also achieves this lower bound
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𝔼[ϕ(ct, at)rt] = 𝔼c,a[ϕ(c, a)ϕ(c, a)⊤θ*] = ∑
c

νc ∑
a
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A(p)

⇒ ̂θ =
1
n

A(p)−1
n

∑
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ϕ(ct, at)rt

IPW estimator!
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instance-dependent!



An Instance-Optimal Algorithm

13



An Instance-Optimal Algorithm

13



An Instance-Optimal Algorithm

13

Input: Π



An Instance-Optimal Algorithm

13

Input: Π
Initialize , estimate Π1 = Π ̂π0



An Instance-Optimal Algorithm

13

Input: Π
Initialize , estimate Π1 = Π ̂π0
for  l = 1,2,⋯



An Instance-Optimal Algorithm

13

Input: Π
Initialize , estimate Π1 = Π ̂π0
for  l = 1,2,⋯

 1. Choose  and  such thatp(l)
c ∈ △𝖠 , ∀c ∈ 𝖢 nl



An Instance-Optimal Algorithm

13

Input: Π
Initialize , estimate Π1 = Π ̂π0
for  l = 1,2,⋯

 1. Choose  and  such thatp(l)
c ∈ △𝖠 , ∀c ∈ 𝖢 nl

             min
pc∈△𝖠,∀c∈𝖢

max
π∈Π

−Δ̂l(π, ̂πl−1) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l



An Instance-Optimal Algorithm

13

Input: Π
Initialize , estimate Π1 = Π ̂π0
for  l = 1,2,⋯

 1. Choose  and  such thatp(l)
c ∈ △𝖠 , ∀c ∈ 𝖢 nl

             min
pc∈△𝖠,∀c∈𝖢

max
π∈Π

−Δ̂l(π, ̂πl−1) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l



An Instance-Optimal Algorithm

13

Input: Π
Initialize , estimate Π1 = Π ̂π0
for  l = 1,2,⋯

 1. Choose  and  such thatp(l)
c ∈ △𝖠 , ∀c ∈ 𝖢 nl

             min
pc∈△𝖠,∀c∈𝖢

max
π∈Π

−Δ̂l(π, ̂πl−1) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

CI width for estimated gap



An Instance-Optimal Algorithm

13

Input: Π
Initialize , estimate Π1 = Π ̂π0
for  l = 1,2,⋯

 1. Choose  and  such thatp(l)
c ∈ △𝖠 , ∀c ∈ 𝖢 nl

             min
pc∈△𝖠,∀c∈𝖢

max
π∈Π

−Δ̂l(π, ̂πl−1) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

2. For , for each context , sampling  and compute IPW estimate 

 for each 

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂l(π, ̂πl−1) π ∈ Π

CI width for estimated gap



An Instance-Optimal Algorithm

13

Input: Π
Initialize , estimate Π1 = Π ̂π0
for  l = 1,2,⋯

 1. Choose  and  such thatp(l)
c ∈ △𝖠 , ∀c ∈ 𝖢 nl

             min
pc∈△𝖠,∀c∈𝖢

max
π∈Π

−Δ̂l(π, ̂πl−1) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

2. For , for each context , sampling  and compute IPW estimate 

 for each 

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂l(π, ̂πl−1) π ∈ Π
3. Update

CI width for estimated gap



An Instance-Optimal Algorithm

13

Input: Π
Initialize , estimate Π1 = Π ̂π0
for  l = 1,2,⋯

 1. Choose  and  such thatp(l)
c ∈ △𝖠 , ∀c ∈ 𝖢 nl

             min
pc∈△𝖠,∀c∈𝖢

max
π∈Π

−Δ̂l(π, ̂πl−1) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

2. For , for each context , sampling  and compute IPW estimate 

 for each 

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂l(π, ̂πl−1) π ∈ Π
3. Update

                                              ̂πl = arg min
π∈Π

Δ̂l(π, ̂πl−1)

CI width for estimated gap



An Instance-Optimal Algorithm

13

Input: Π
Initialize , estimate Π1 = Π ̂π0
for  l = 1,2,⋯

 1. Choose  and  such thatp(l)
c ∈ △𝖠 , ∀c ∈ 𝖢 nl

             min
pc∈△𝖠,∀c∈𝖢

max
π∈Π

−Δ̂l(π, ̂πl−1) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

2. For , for each context , sampling  and compute IPW estimate 

 for each 

t ∈ [nl] ct at ∼ p(l)
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Δ̂l(π, ̂πl−1) π ∈ Π
3. Update

                                              ̂πl = arg min
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Theorem [Li et al. 2022] The above algorithm returns an -PAC 
policy with at most  samples. 

(ϵ, δ)
O(ρΠ,ϵ log( |Π | /δ)log2(1/ϵ))

CI width for estimated gap
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good policy  true gap small⇒



An Instance-Optimal Algorithm

17

π

2−2

−Δ(π)

For -good policy, our criteria 
forces the estimation to be -good! 

ϵ
2ϵ



An Instance-Optimal Algorithm

17

π

2−2

−Δ(π)

For -good policy, our criteria 
forces the estimation to be -good! 

ϵ
2ϵ

Returning the empirical best policy at the end  at least -good  ⇒ 2ϵ
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Theorem [Li et al. 2022] The above algorithm returns an -PAC 
policy with at most  samples and 

 calls to argmax oracle. 

(ϵ, δ)
O(ρΠ,ϵ log( |Π | /δ)log2(1/ϵ))

poly( |𝖠 | , ϵ−1, log(1/δ), log( |Π | ))



Conclusion
• Propose a new instance-dependent lower bound for PAC contextual bandits

• Design a computationally efficient algorithm and show that it is instance-optimal 
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Outline
• Project 1: Instance-optimal PAC Contextual bandits

• Project 2: Estimation of the mean of subsidiary outcome

• Future Work

25



Estimation of the mean of subsidiary outcome under 
an optimal policy for primary outcome

Zhaoqi Li, Alex Luedtke



Motivation
• In biomedical trials, it is of interest to identify the best treatment to induce 

disease remission, i.e. identifying the optimal policy

• However, side effects of certain medicine are also concerns

• Important to investigate subsidiary outcomes
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Goal: conduct inference on ! {Ψπ : π ∈ Π*}

remission rate side effects
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Related Work
• Estimate the mean outcome under an optimal policy:

• corresponding to conducting inference on {Φπ : π ∈ Π*}

• the standard one-step estimator is efficient [Luedtke et al. 2016]

• Estimate  simultaneously:(Y*, Y†)

• Multi-objective optimization

• Efficient algorithms exist to find the solution [Gunantara et al. 2018]
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{Ψπ : π ∈ Π*}

• Can we perform inference without conditions assumed previously? 

• Can we improve on the previous method to provide a tighter confidence interval?

30

Yes, using a uniform band approach. 

Yes, using a joint approach. 

Yes, under certain (strong) margin conditions. 
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• When estimating , since  optimizes , we only need guarantees for the 
behavior of  on regions where estimation for  is hard

Φπ* π* Φ
Φ π*

• Since  is not necessarily an optimizer for , we need much stronger conditions to 
guarantee the behavior of  on the entire space

π* Ψ
Ψ
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qb(x) := 𝔼[Y* |A = 1,X = x] − 𝔼[Y* |A = 0,X = x]

qb(x) = 0 ⇒ A Y* ⇒ π*

32

Condition 1 (Margin Condition of ). For some ,Y* β > 0
Pr (0 ≤ qb(X) ≤ t) ≲ tβ ∀t > 0

• Condition 1 ensures that the mass of  concentrated around zero is smallqb(X)
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sb(x) := 𝔼[Y† |A = 1,X = x] − 𝔼[Y† |A = 0,X = x]

Ψ
Ψ Φ

33

Condition 2 (Margin Condition between  and ). For some , Y† Y* α > 2
Pr0 ( sb(X) ≥ t qb(X) ) ≤ t−α, ∀t > 1.

• It ensures that when estimation problem is hard (i.e.  small for some ),
 is not too large, i.e. the impact of a policy on this  is controlled

qb(x) x
|sb(x) | x



Efficient estimator
• Under these conditions (plus some regularity conditions), we can show that the 

similar one-step estimator for  is efficient given dataset 

• Let  be the expected subsidiary outcome, 
 be the conditional probability, and  be the best 

policy under 

Ψπ* 𝖣 := {xi, ai, yi}n
i=1

s(a, x) = 𝔼[Y† |A = a, X = x]
p(a |x) = Pr(A = a |X = x) π*n
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Theorem (Efficient estimator of ). Under conditions including 
Condition 1 and 2, the one-step estimator

  

is an efficient estimator of .

Ψπ*

ψ̂n =
1
n

n

∑
i=1

1{ai = π*n (xi)}
p(ai |xi)

(y†
i − s(ai, xi)) + s(π*n (xi), xi)

Ψπ*
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Inference without margin condition
• Suppose we have good estimates  of ,  of ̂ϕπ Φπ ψ̂π Ψπ

• Two-stage uniform confidence band

• First stage: eliminate policies that are unlikely to be optimal

Φπ

̂ϕπ

π

largest LCB

Eliminated

• Second stage: construct a uniform confidence interval for the remaining policies 
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37

Theorem (confidence interval for ). The following confidence 
interval contains  with probability at least  

asymptotically:

Ψπ
{Ψπ : π ∈ Π*} 1 − α

[ inf
π∈Π̂1−α

[ψ̂π −
σ̃π(P)u1−α/2

n1/2 ], sup
π∈Π̂1−α

[ψ̂π +
σ̃π(P)u1−α/2

n1/2 ]] .
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• We first demonstrate why the joint approach gives tighter confidence interval 

than the two-stage approach
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u1−(α−β)/2

tβ/2

joint approach selects  which provides the tightest confidence interval(t, u)



Simulation Setting
• Consider 1D case, threshold policy class 

• Consider three scenarios:

Π = {1{x ≥ a} : a ∈ ℝ}

39

 is non-uniqueπ*  is unique,  and  
correlated 

π* Y* Y†  is unique,  and  
not correlated 

π* Y* Y†

Φπa
Ψπa

a a a



Detailed Setting
• For the uniform confidence band method and the joint method, estimate the 

supremum via multiplier bootstrap

• In each setting, we simulate  with a sample size of 8000 for 1000 iterations

• Use bootstrap sample size of 1000, a confidence level of 

X

α = 0.05

40



Simulation Results

41

Figure: confidence interval width for various scenarios

two-stage joint one-step

non-unique 1.0 1.0 0.0

unique non-correlated 0.98 0.98 0.812

unique correlated 0.978 0.981 0.949

Table: coverages for various scenarios



Summary
• Propose a margin condition and construct an efficient estimator for 

• Present a two-stage and a joint approach to make inference on  
without the margin condition

• Run numerical experiments to show the desirable properties of the methods

{Ψπ : π ∈ Π*}

{Ψπ : π ∈ Π*}
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Outline
• Project 1: Instance-optimal PAC Contextual bandits

• Project 2: Estimation of the mean of subsidiary outcome

• Future Work

43



Plans for Third Project
• Policy learning when the action space is large

• Application to pricing problem

• At time , a customer arrives, the learner plays price  and receive revenue 

• Assume , one objective is to identify 

• Can still use the algorithm before, but will not be computationally efficient

t pt
R(pt)

p⋆ := arg max
p∈ℝ

R(p) p⋆

44
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Related Work and Objectives
• Existing methods: 

• discretizing the action space [Krishnamurthy et al. 2020]: minimax results

• Efficient computation: posterior sampling method

Question: 

• What is an instance-dependent PAC lower bounds when action space is large?

• Is there a computationally efficient algorithm in this setting?

45



Thanks!



Inefficiency of low-regret algorithms
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Inefficiency of low-regret algorithms

47

Theorem [Li et al. 2022] There exists an instance  such that for any 
-minimax regret algorithm that is -PAC, the stopping time satisfies

.  

μ α
(0,δ)

𝔼μ[τ] ≥ |Π |2 Δ−2 log2(1/2.4δ)/4α



Posterior Sampling
• Assume  has a linear form , a framework is as follows: 

• Can we show that posterior sampling works in this setting? If not, what is the 
computational limit of posterior sampling methods, i.e. a lower bound?

R(pt) R(pt) = ⟨ϕpt
, θ*⟩

48

Input: Prior  for  
for   

1. sample  

2. compute  

3. Update posterior 

Π0 θ*
t = 1,2,⋯

θ̃ ∼ Πt−1

pt = arg max
p

R(p, θ̃)

Πt



Agnostic Setting Reduces to Linear
• What if we do not assume linear structure of reward function?

49

We can reduce it to the previous setting by constructing !ϕ

• Let  where θ* ∈ ℝ|𝖢|×|𝖠| [θ*]c,a = r(c, a)

c(     )
a

r(c, a)
vectorize

θ*



Agnostic Setting Reduces to Linear

50

r(c, a) = ⟨vec(ece⊤
a ), θ*⟩

ϕ(c, a)

∥ϕπ*
− ϕπ∥2

A(p)−1 = ∑
c

νc ∑
a

1
pc,a

(1{π(c) = a} − 1{π*(c) = a})2 = 𝔼c∼ν ( 1
pc,π(c)

+
1

pc,π*(c) ) 1{π*(c) ≠ π(c)} .



Agnostic Setting Reduces to Linear

ρΠ,ϵ := min
pc∈△𝖠, ∀c∈𝖢

max
π∈Π∖π*

𝔼c∼ν [( 1
pc,π(c)

+ 1
pc,π*(c) ) 1{π*(c) ≠ π(c)}]

(𝔼c∼ν[ r(c, π*(c)) − r(c, π(c)) ] ∨ ϵ)2
.

Variance

Gap

50
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 quantile of the 
normal distribution

1 − (α − β)/2



Uniform Confidence Band
• Suppose , , standard deviationσπ := (PD2

π)1/2 σ̃π := (PD̃2
π)1/2

• Let  be some Gaussian process characterizing the behavior of {𝔾 f : f ∈ ℱ} ̂ϕπ

• We spend  of the confidence level in the first-stage to eliminate policies β < α
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 quantile of 1 − β/2 sup
f∈ℱ

𝔾 f

inf
π∈Π̂1−β

(ψ̂π −
σ̃πz1−(α−β)/2

n1/2
), sup

π∈Π̂1−β

(ψ̂π +
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n1/2
)

• First stage: 

 quantile of the 
normal distribution

1 − (α − β)/2

• Second stage: construct a uniform confidence interval for the remaining policies 
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• More specifically, choose  such that (t1−α/2, u1−α/2)
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remove the union bound argument!

inf
π∈Π

Pr {sup
f∈ℱ

|𝔾 f | ≤ t1−α/2, 𝔾 f̃π ≤ u1−α/2} ≥ 1 − α/2.

Theorem (confidence interval for ). The following confidence 
interval contains  with probability at least  asymptotically:

Ψπ
Ψπ 1 − α

[ inf
π∈Π̂1−α

[ψ̂π −
σ̃π(P)u1−α/2

n1/2 ], sup
π∈Π̂1−α

[ψ̂π +
σ̃π(P)u1−α/2

n1/2 ]] .



3D Simulation

53



Inefficiency of Anytime CI and Robust Mean Estimator

• Anytime confidence interval scales like , which is vacuous as 

• Let . Without the margin condition 2,  will not be pathwise 

differentiable around some , i.e. the limit  does not converge.  

• Also,  is likely not  without the margin condition, so the 
CI constructed by any robust mean estimator will suffer this as well, which means 
that it is necessarily worse than the uniform confidence band approach, which has 
the  scaling in the confidence interval

t log(1/δ) t → ∞

Ψ(P) := Ψπ*P(P) Ψ

P0 lim
ϵ→0

Ψ(Pϵ) − Ψ(P0)
ϵ

Ψπ*n (P0) − Ψπ*0 (P0) oP0
(n−1/2)

n−1/2
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Hard Instance
• Fix ,  and let  with uniform distribution, . 

• For , let  and define . 

• Then  and  for all . 

• In this case,  and .

m ∈ ℕ Δ ∈ (0,1] 𝖢 = [m] 𝖠 = {0,1}

i = 1,…, m πi( j) = 1{i = j} r(i, j) = Δ1{j = π1(i)}

V(π1) = Δ V(πi) = Δ(1 − 2/m) i ∈ 𝖢∖{1}

m = |Π | ρΠ,0 =
4/m

(2Δ/m)2
= mΔ−2
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Towards Lower Bound: Estimators
• Linear contextual bandit setting:

• feature map:  such that  for 

• Given dataset  where , 

ϕ : 𝖢 × 𝖠 → ℝd r(c, a) = ⟨ϕ(c, a), θ*⟩ θ* ∈ Θ ⊂ ℝd

𝖣 = {(ct, at, rt)}n
t=1 at ∼ pct

∈ △𝖠

56

𝔼[ϕ(ct, at)rt] = 𝔼c,a[ϕ(c, a)ϕ(c, a)⊤θ*] = ∑
c

νc ∑
a

pc,aϕ(c, a)ϕ(c, a)⊤θ*
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Estimate the Gap
• For each define the gap 

• Let , an estimate 

π ∈ Π, Δ(π) := V(π*) − V(π)

ϕπ := 𝔼c∼ν[ϕ(c, π(c))] Δ̂(π) = ̂V(π*) − ̂V(π) = ⟨ϕπ*
− ϕπ, ̂θ⟩

57

Var(Δ̂(π)) = (ϕπ*
− ϕπ)⊤Var( ̂θ)(ϕπ*

− ϕπ) =
∥ϕπ*

− ϕπ∥2
A(p)−1

n

• Assuming Gaussian noise, with probability at least ,1 − δ

| Δ̂(π) − Δ(π) | ≤
2∥ϕπ*

− ϕπ∥2
A(p)−1 log(1/δ)
n



Towards Lower Bound
• Linear contextual bandit setting:

• feature map:  such that  for 

• Let , so for any , 

ϕ : 𝖢 × 𝖠 → ℝd r(c, a) = ⟨ϕ(c, a), θ*⟩ θ* ∈ Θ ⊂ ℝd

ϕπ := 𝔼c∼ν[ϕ(c, π(c))] π ∈ Π V(π) = ⟨ϕπ, θ*⟩
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Lower Bound in Linear Contextual Bandits
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Lower Bound in Linear Contextual Bandits

59

confidence set for θ*

θ*

Θ2
Θ3

 is the best policyΘ1 := {θ ∈ Θ : π1 }

Want confidence set to shrink to  as quickly as possible!Θ1

̂θn



A Lower Bound
• Let  denote the confidence set


•

𝖲n

𝖲n ⊂ Θ1 ⇔ ∀π ∈ Π, ∀θ ∈ 𝖲n, V(π*) − V(π) ≥ 0
⇔ ∀π ∈ Π, ∀θ ∈ 𝖲n, (ϕπ*

− ϕπ)⊤θ ≥ 0
⇔ ∀θ ∈ 𝖲n, (ϕπ*

− ϕπ)⊤θ* ≥ (ϕπ*
− ϕπ)⊤(θ* − θ)
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estimation error of the gapgap

Need estimates for  and the gap!θ*



Estimators for θ*
• Given dataset  where , 𝖣 = {(ct, at, rt)}n

t=1 at ∼ pct
∈ △𝖠

61
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A Lower Bound
• Plugging in the guarantee: ∀θ ∈ 𝖲n, (ϕπ*

− ϕπ)⊤(θ* − θ) ≤ (ϕπ*
− ϕπ)⊤θ*

⇔
2∥ϕπ*

− ϕπ∥2
A(p)−1 log(1/δ)
n

≤ (ϕπ*
− ϕπ)⊤θ*

63

• Choose action distribution  such that: 
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Δ(π)2
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n
2 log(1/δ)
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p

max
π∈Π∖π*

∥ϕπ*
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A(p)−1

Δ(π)2
≤

n
2 log(1/δ)

Theorem [Li et al. 2022] Let  be the stopping time of the algorithm. Any -
PAC algorithm satisfies  with high probability where  

τ (0,δ)
τ ≥ ρΠ,0 log(1/2.4δ)

ρΠ,0 = min
pc∈△𝖠,∀c∈𝖢

max
π∈Π∖π*

∥ϕπ*
− ϕπ∥2

A(p)−1

Δ(π)2
.

gap

variance
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Theorem [Li et al. 2022] Let  be the stopping time of the algorithm. Any -
PAC algorithm satisfies  with high probability where  

τ (0,δ)
τ ≥ ρΠ,0 log(1/2.4δ)

ρΠ,0 = min
pc∈△𝖠,∀c∈𝖢

max
π∈Π∖π*

∥ϕπ*
− ϕπ∥2

A(p)−1

Δ(π)2
.

gap

variance



A Lower Bound in Linear Bandits

66

• Set of features , some unknown parameter 

• At each time :

• Choose action 

• Receive reward 

• Goal: identify 

x ∈ 𝒳 θ* ∈ Θ ⊂ ℝd

t = 1,2,⋯

at ∈ 𝖠

rt = ⟨xat
, θ*⟩ + ϵ

a* = arg max
a∈𝖠

⟨xa, θ*⟩
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Θ2
Θ3

 is the best armΘ1 := {θ ∈ Θ : 1 }

• Identify a* = arg max
a∈𝒜

⟨xa, θ*⟩
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confidence set for θ*

θ*

Θ2
Θ3

 is the best armΘ1 := {θ ∈ Θ : 1 }

• Identify a* = arg max
a∈𝒜

⟨xa, θ*⟩

̂θn



A Lower Bound in Linear Bandits

68



A Lower Bound in Linear Bandits

68

• Given dataset , consider the least-squares estimate 

,

{(at, rt)}n
t=1

̂θn = (
n

∑
t=1

xat
x⊤

at )
−1

(
n

∑
t=1

xat
rt)
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{(at, rt)}n
t=1

̂θn = (
n

∑
t=1
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at )
−1

(
n

∑
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rt)

• Can get  with probability at least |x⊤(θ* − ̂θn) | ≤ c∥x∥A−1
n

log( |𝖠 | /δ) 1 − δ
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This direction provides a tradeoff 
between the deviation from the truth 
and the uncertainty, i.e. the variance 

̂θn



Towards Lower Bound: Estimators
• Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

• feature map:  such that  for 
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IPW estimate!
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Var(Δ̂(π)) = (ϕπ*
− ϕπ)⊤Var( ̂θ)(ϕπ*

− ϕπ) =
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n
Theorem [Li et al. 2022] Let  be the stopping time of the algorithm. Any -

PAC algorithm satisfies  with high probability where  
τ (0,δ)

τ ≥ ρΠ,0 log(1/2.4δ)

ρΠ,0 = min
pc∈△𝖠,∀c∈𝖢

max
π∈Π∖π*

∥ϕπ*
− ϕπ∥2

A(p)−1

Δ(π)2
.

gap

variance


