
Theorem (Li, Jamieson, Jain)  Set , and 
assume  is bounded. Then with probability 1 

η = O(1/ T )
Θ
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Input:  
for  

1. Learner chooses  
2. Nature reveals 

𝖷 ⊂ ℝd

t = 1,2,…
xt ∈ 𝖷

yt = ⟨xt, θ⋆⟩ + ϵt

Goal: identify  as quickly as possiblex⋆ := arg max
x∈𝖷

⟨x, θ⋆⟩

N(0,1)

Our Algorithm

PEPS: Pure Exploration with Projection-Free Sampling 
Input: , T,  
for   
  1. compute the leader  

  2. sample a challenger  whose best arm is not  

  3. sample , observe  

  4. Update ,  

  5. Update    

Return   

𝖷 η
t = 1,2,⋯, T

̂xt = arg max
x∈𝖷

x⊤ ̂θt

θt ∼ pt ̂xt

xt ∼ λt yt

̂θt+1 λt+1,x ← λt,xeη(x⊤(θt− ̂θt))2

pt+1 = N( ̂θt+1, (
t

∑
s=1

xsx⊤
s )−1)

̂x = arg max
x∈𝖷

x⊤θ, θ ∼ pT

pull arm  maximizingx
|x⊤(θt − ̂θt) |

Posterior Update

Experimental Results

Figure: Hard Instance Figure: TopK Instance

lim
T→∞

− 1
T

log ℙθ∼pT
( ̂xT ≠ x⋆) = τ⋆

optimal rate!

Performance Guarantee

Existing Optimal Approaches: [Xu et al. 2018], [Fiez et al. 
2019], [Degenne et al. 2020] 
• Require enumeration of  or complicated projections𝖷
Thompson Sampling:  
• Regret minimizing algorithm and computationally easy 
• However suboptimal for BAI on certain instances
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x3

x2
Sample “informative” arm x2

θt ⇒pull x3

θ⋆ = x1

market automation

optimal design

Goal: find the best action to maximize profit!

optimal recommendation

Motivation Related Work

Problem Statement

x1 x2 x3 x4

However, large companies have millions of users and 
millions of items are listed  

 Can we find the best action quickly on large scale?⇒

Key Advantages of Our Algorithm 

• Achieves optimal rate  find best action quickly 
• Algorithm is easy to implement on large scale

⇒

Key Ideas behind Our Algorithm

τ⋆ := max
λ∈Δ𝖷

min
θ∈Θc

x⋆

∥θ⋆−θ∥2
A(λ) = max

λ∈Δ𝖷
min

p∈Δ(Θc
x⋆)

𝔼θ∼p[∥θ⋆−θ∥2
A(λ)]

Idea: Two player zero-sum game 
1. Max-player: Exponential Weights on  
2. Min-player: Posterior Updates on 

λ ∈ Δ𝖷
p ∈ Δ(Θc

x⋆
)

  (λt, pt) → max
λ∈Δ𝖷

min
p∈Δ(Θc

x⋆)
𝔼θ∼p[∥θ⋆−θ∥2

A(λ)] =: τ⋆By OCO argument, 

The optimal allocation is implied by the lower bound  

 solve the saddle point problem using online learning!

τ⋆
⇒

: unknown population preferencesθ⋆

Is there an algorithm as easy as TS yet still optimal? 

Maintain a distribution over Θc
x⋆

:= {θ ∈ Θ : x⋆ ≠ arg max
x∈𝖷

x⊤θ}

 

 

  exponential weights update!

pt+1,θ ∝ exp( − (θ − ̂θt+1)⊤(∑t
s=1 xsx⊤

s )(θ − ̂θt+1))
≈ exp( − ∑t

s=1 (x⊤
s (θ − ̂θs))2) ∝ pt,θ exp (−(x⊤

t (θ − ̂θt)2)
⇒

Also, sampling from  is easy since  is Gaussian posteriorp pt+1


