Optimal Exploration is no harder than Thompson Sampling
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optimal recommendation

optimal design
6, : unknown population preferences

Goal: find the best action to maximize profit!

However, large companies have millions of users and
millions of items are listed

Problem Statement

Input: X C R?
forr=1,2,...

1. Learner chooses x, € X
N(O,1)

2. Nature reveals y, = (x,,0,) + €, —

Goal: identify x, := arg max(x, 6, ) as quickly as possible
xeX

Key Advantages of Our Algorithm

e Achieves optimal rate = find best action quickly

e Algorithm is easy to implement on large scale

Related Work

Existing Optimal Approaches: [Xu et al. 2018], [Fiez et al.

2019], [Degenne et al. 2020]
e Require enumeration of X or complicated projections

Thompson Sampling:

e Regret minimizing algorithm and computationally easy

e However suboptimal for BAl on certain instances
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Key ldeas behind Our Algorithm

The optimal allocation is implied by the lower bound 7,

= solve the saddle point problem using online learning!

. : ) : 2
T, := Mmax min ||9*—«9||A(/1) = max min [EQNp[llﬁ*—HllAu)]
AEAy OO AEAy pEA(B )

Maintain a distribution over (*D;* = {0 € O : x, # argmax x'6}
xeX

Idea: Two player zero-sum game

1. Max-player: Exponential Weights on 4 € Ay
2. Min-player: Posterior Updates on p € A(©5 )

Va\

Prv1,6 & eXP( — (0 - ‘9t+1)T< ZZ=1XSXJ>(9 ~ ét+1)>
vexp( = T, (70— 0)7) o« pgexp (~(7©0 - 0)°)

= exponential weights update!

Also, sampling from p is easy since p,, | is Gaussian posterior

By OCO argument, (1, p,) » max min [EQNP[HH*—HHI%M)] =T,

AEAy pEA(OY)

Our Algorithm

PEPS: Pure Exploration with Projection-Free Sampling

Input: X, T, 77
fort=1,2,---,T

1. compute the leader X, = argmax x'6,
xeEX

2. sample a challenger 6, ~ p, whose best arm is not X,

Va\

pull arm x maximizing

3. sample x, ~ 4, observe y, N
|x'(0,—0)]

4. Update @Hl, As1x € /It,xe”(xT(@f_éf))2

i
5. Update p,, | = N(@Hl, ( Z x.x,)"!) «— Posterior Updatg
s=1

Return £ = argmax x'0,0 ~ p;
xeX

Performance Guarantee

Theorem (Li, Jamieson, Jain) Set#n = O(I/ﬁ), and

assume 0O is bounded. Then with probability 1
optimal rate!
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Figure: Hard Instance Figure: TopK Instance



